I need this today to add the implicit isolated parameter... but I can imagine us
adding more implicit parameters in the future, so it makes sense to formalize it
so it is easier to do in the future.
This corresponds to the parameter-passing convention of the Itanium C++
ABI, in which the argument is passed indirectly and possibly modified,
but not destroyed, by the callee.
@in_cxx is handled the same way as @in in callers and @in_guaranteed in
callees. OwnershipModelEliminator emits the call to destroy_addr that is
needed to destroy the argument in the caller.
rdar://122707697
Although I don't plan to bring over new assertions wholesale
into the current qualification branch, it's entirely possible
that various minor changes in main will use the new assertions;
having this basic support in the release branch will simplify that.
(This is why I'm adding the includes as a separate pass from
rewriting the individual assertions)
Use the lvalue mechanism to build opaque formal accesses so that they
nest properly with writebacks. Don't put a cleanup on the lvalue because
that creates a double destroy. Fixes rdar://124362085.
If the value being moved was a trivial value of a nontrivial type (like nil
for Optional<T>) then the lifetime checker would complain that there was
no `destroy_value` ending the consumed value's lifetime. Partial fix
for #71608.
We want to preserve the borrow scope during switch dispatch so that move-only
checking doesn't try to analyze destructures or consumes out of it. SILGen
should mark anywhere that's a potential possibility with its own marker so that
it gets borrow checked independently.
Relax some existing pattern matches and add some unhandled instructions to the
walkers so that borrowing switches over address-only enums are properly analyzed
for incorrect consumption. Add a `[strict]` flag to `mark_unresolved_move_only_value`
to indicate a borrow access that should remain a borrow access even if the subject
is later stack-promoted from a box.
In preparation for inserting mark_dependence instructions for lifetime
dependencies early, immediately after SILGen. That will simplify the
implementation of borrowed arguments.
Marking them unresolved is needed to make OSSA verification
conservative until lifetime dependence diagnostics runs.
It's better to ask SILType if it is MoveOnly than go to the AST type and
ask if it is noncopyable, because some types in SIL do not have a
well-defined notion of conformance in the AST.
The dependent 'value' may be marked 'nonescaping', which guarantees that the
lifetime dependence is statically enforceable. In this case, the compiler
must be able to follow all values forwarded from the dependent 'value', and
recognize all final (non-forwarded, non-escaping) use points. This implies
that `findPointerEscape` is false. A diagnostic pass checks that the
incoming SIL to verify that these use points are all initially within the
'base' lifetime. Regular 'mark_dependence' semantics ensure that
optimizations cannot violate the lifetime dependence after diagnostics.
Values produced by address-only `enum` instructions have non-none
ownership. And because `enum` is representation-changing, they have
`owned` ownership.
This corresponds at the opaque values SIL stage to the fact that at the
address-lowered SIL stage the storage location has non-trivial
initialization which must be `destroy_addr`d, regardless of whether an
empty case was stored to it.
I think from SIL's perspective, it should only worry about whether the
type is move-only. That includes MoveOnlyWrapped SILTypes and regular
types that cannot be copied.
Most of the code querying `SILType::isPureMoveOnly` is in SILGen, where
it's very likely that the original AST type is sitting around already.
In such cases, I think it's fine to ask the AST type if it is
noncopyable. The clarity of only asking the ASTType if it's noncopyable
is beneficial, I think.
I was originally hoping to reuse mark_must_check for multiple types of checkers.
In practice, this is not what happened... so giving it a name specifically to do
with non copyable types makes more sense and makes the code clearer.
Just a pure rename.
In opaque values mode, emit the unowned copy instructions to convert as
follows:
strong_copy_unowned_value: `@owned $sil_unowned T` -> `@owned $T`
unowned_copy_value: `@owned T` -> `@owned $sil_unowned T`
Doing so is necessary in opaque values mode where it is needed to deal
with unowned values directly rather than indirectly via `load_unowned`s
and `store_unowned`s.
The new instruction unwraps an `@sil_weak` box and produces an owned
value. It is only legal in opaque values mode and is transformed by
`AddressLowering` to `load_weak`.
It is necessary for opaque values where for casts that will newly start
out as checked_cast_brs and be lowered to checked_cast_addr_brs, since
the latter has the source formal type, IRGen relies on being able to
access it, and there's no way in general to obtain the source formal
type from the source lowered type.
The `bare` attribute indicates that the object header is not used throughout the lifetime of the object.
This means, no reference counting operations are performed on the object and its metadata is not used.
The header of bare objects doesn't need to be initialized.
Reformatting everything now that we have `llvm` namespaces. I've
separated this from the main commit to help manage merge-conflicts and
for making it a bit easier to read the mega-patch.
This is phase-1 of switching from llvm::Optional to std::optional in the
next rebranch. llvm::Optional was removed from upstream LLVM, so we need
to migrate off rather soon. On Darwin, std::optional, and llvm::Optional
have the same layout, so we don't need to be as concerned about ABI
beyond the name mangling. `llvm::Optional` is only returned from one
function in
```
getStandardTypeSubst(StringRef TypeName,
bool allowConcurrencyManglings);
```
It's the return value, so it should not impact the mangling of the
function, and the layout is the same as `std::optional`, so it should be
mostly okay. This function doesn't appear to have users, and the ABI was
already broken 2 years ago for concurrency and no one seemed to notice
so this should be "okay".
I'm doing the migration incrementally so that folks working on main can
cherry-pick back to the release/5.9 branch. Once 5.9 is done and locked
away, then we can go through and finish the replacement. Since `None`
and `Optional` show up in contexts where they are not `llvm::None` and
`llvm::Optional`, I'm preparing the work now by going through and
removing the namespace unwrapping and making the `llvm` namespace
explicit. This should make it fairly mechanical to go through and
replace llvm::Optional with std::optional, and llvm::None with
std::nullopt. It's also a change that can be brought onto the
release/5.9 with minimal impact. This should be an NFC change.
Some notes:
1. I implemented this as a contextual keyword that can only apply directly to
lvalues. This ensures that we can still call functions called copy, define
variables named copy, etc. I added tests for both the c++ and swift-syntax based
parsers to validate this. So there shouldn't be any source breaks.
2. I did a little bit of type checker work to ensure that we do not treat
copy_expr's result as an lvalue. Otherwise, one could call mutating functions on
it or assign to it, which we do not want since the result of copy_value is
3. As expected, by creating a specific expr, I was able to have much greater
control of the SILGen codegen and thus eliminate extraneous copies and other
weirdness than if we used a function and had to go through SILGenApply.
rdar://101862423
This ensures that given a class that contains a noncopyable type that contains
another noncopyable type:
```
@_moveOnly struct S2 {}
@_moveOnly struct S { var s2: S2 }
class C { var s: S }
```
if we call a resilient function that takes C.S.S2:
```
borrowVal(c.s.s2)
```
we properly spill s2 onto the stack using a store_borrow.
Why Do This?
------------
Currently SILGenLValue treats ref_element_addr as a base that it needs to load
from for both copyable and non-copyable types. We keep a separation of concerns
and require emission of resilient functions to handle these loaded values. For
copyable types this means copying the value and storing it into a temporary
stack allocation. For noncopyable types, we never actually implemented this so
we would hit an error in SILGenApply telling us that our resilient function
expected an address argument, but we are passing an object.
To work around this, I updated how we emit borrowed lvalue arguments to in this
case to spill the value into a temporary allocation using a store_borrow. I also
included a test that validates that we properly have a read exclusivity scope
around the original loaded from memory for the entire call site so even though
we are performing a load_borrow and then spilling it, we still have read
exclusivity to the original memory for the entire region meaning that we still
preserve the semantics.
rdar://109171001
The reason why I am doing this is that otherwise if one has a function that
takes both a guaranteed and an owned parameter, we will break OSSA invariants
since the load [take] will invalidate the load_borrow. So instead, we put in a
load_borrow knowing that the move checker will convert it to a load_borrow
assuming that the two pass exclusivity checking.
NOTE: Because of some missing functionality in subsequent tests, I had to
disable one test (moveonly_escaping_definite_initialization.swift) and also add
some checks for copy of noncopyable object errors. They will go away in the next
2 commits.
rdar://108510987
This patch replaces the stateful generation of SILScope information in
SILGenFunction with data derived from the ASTScope hierarchy, which should be
100% in sync with the scopes needed for local variables. The goal is to
eliminate the surprising effects that the stack of cleanup operations can have
on the current state of SILBuilder leading to a fully deterministic (in the
sense of: predictible by a human) association of SILDebugScopes with
SILInstructions. The patch also eliminates the need to many workarounds. There
are still some accomodations for several Sema transformation passes such as
ResultBuilders, which don't correctly update the source locations when moving
around nodes. If these were implemented as macros, this problem would disappear.
This necessary rewrite of the macro scope handling included in this patch also
adds proper support nested macro expansions.
This fixes
rdar://88274783
and either fixes or at least partially addresses the following:
rdar://89252827
rdar://105186946
rdar://105757810
rdar://105997826
rdar://105102288