ProtocolConformanceRef already has an invalid state. Drop all of the
uses of Optional<ProtocolConformanceRef> and just use
ProtocolConformanceRef::forInvalid() to represent it. Mechanically
translate all of the callers and callsites to use this new
representation.
A "hole" is a type variable which type couldn't be determined
due to an inference failure e.g. missing member, ambiguous generic
parameter which hasn't been explicitly specified.
It is used to propagate information about failures and avoid
recording fixes which are a consequence of earlier failures e.g.
```swift
func foo<T: BinaryInteger>(_: T) {}
struct S {}
foo(S.bar) // Actual failure here is that `S` doesn't have a member
// `bar` but a consequence of that failure is that generic
// parameter `T` doesn't conform to `BinaryInteger`.
```
Such tracking makes it easier to ignore already "fixed" requirements
which have been recorded in the constraint system multiple times e.g.
a call to initializer would open both base type and initializer
method which have shared (if not the same) requirements.
One-way constraint expressions, which are the only things that
introduce one-way constraints at this point, want to look through
lvalue types to produce values. Rename OneWayBind to OneWayEqual, map
it down to an Equal constraint when it is simplified (to drop
lvalue-ness), and apply that coercion during constraint application.
Part of rdar://problem/50150793.
There were a few places where we wanted fast testing to see whether a
particular type variable is currently of interest. Instead of building
local hash tables in those places, keep type variables in a SetVector
for efficient testing.
Now that we've moved to C++14, we no longer need the llvm::make_unique
implementation from STLExtras.h. This patch is a mechanical replacement
of (hopefully) all the llvm::make_unique instances in the swift repo.
When we transform each expression or statement in a function builder,
introduce a one-way constraint so that type information does not flow
backwards from the context into that statement or expression. This
more closely mimics the behavior of normal code, where type inference
is per-statement, flowing from top to bottom.
This also allows us to isolate different expressions and statements
within a closure that's passed into a function builder parameter,
reducing the search space and (hopefully) improving compile times for
large function builder closures.
For now, put this functionality behind the compiler flag
`-enable-function-builder-one-way-constraints` for testing purposes;
we still have both optimization and correctness work to do to turn
this on by default.
Introduce the notion of "one-way" binding constraints of the form
$T0 one-way bind to $T1
which treats the type variables $T0 and $T1 as independent up until
the point where $T1 simplifies down to a concrete type, at which point
$T0 will be bound to that concrete type. $T0 won't be bound in any
other way, so type information ends up being propagated right-to-left,
only. This allows a constraint system to be broken up in more
components that are solved independently. Specifically, the connected
components algorithm now proceeds as follows:
1. Compute connected components, excluding one-way constraints from
consideration.
2. Compute a directed graph amongst the components using only the
one-way constraints, where an edge A -> B indicates that the type
variables in component A need to be solved before those in component
B.
3. Using the directed graph, compute the set of components that need
to be solved before a given component.
To utilize this, implement a new kind of solver step that handles the
propagation of partial solutions across one-way constraints. This
introduces a new kind of "split" within a connected component, where
we collect each combination of partial solutions for the input
components and (separately) try to solve the constraints in this
component. Any correct solution from any of these attempts will then
be recorded as a (partial) solution for this component.
For example, consider:
let _: Int8 = b ? Builtin.one_way(int8Or16(17)) :
Builtin.one_way(int8Or16(42\
))
where int8Or16 is overloaded with types `(Int8) -> Int8` and
`(Int16) -> Int16`. There are two one-way components (`int8Or16(17)`)
and (`int8Or16(42)`), each of which can produce a value of type `Int8`
or `Int16`. Those two components will be solved independently, and the
partial solutions for each will be fed into the component that
evaluates the ternary operator. There are four ways to attempt that
evaluation:
```
[Int8, Int8]
[Int8, Int16]
[Int16, Int8]
[Int16, Int16]
To test this, introduce a new expression builtin `Builtin.one_way(x)` that
introduces a one-way expression constraint binding the result of the
expression 'x'. The builtin is meant to be used for testing purposes,
and the one-way constraint expression itself can be synthesized by the
type checker to introduce one-way constraints later on.
Of these two, there are only two (partial) solutions that can work at
all, because the types in the ternary operator need a common
supertype:
[Int8, Int8]
[Int16, Int16]
Therefore, these are the partial solutions that will be considered the
results of the component containing the ternary expression. Note that
only one of them meets the final constraint (convertibility to
`Int8`), so the expression is well-formed.
Part of rdar://problem/50150793.
Simplify the interface to gatherConstraints() by performing the
uniquing within the function itself and returning only the resulting
(uniqued) vector of constraints.
If assignment expression is not considered as a top-level candidate
it would mean that other candidates would be allowed to produce
types inconsistent with destination type of the assignment.
Resolves: rdar://problem/51413254
It's only needed in one place in the constraint solver to allow
`() -> T` to `() -> ()` and `() -> Never` to `() -> T` for expressions
representing return of a single expression functions, so to simplify
contextual type handling in diagnostic and other places it would be
better to replace dedicated locator kind with a flag on existing `ContextualType`.
Resolves: rdar://problem/51641323
Merging partial solutions can end up assigning the same type to a
particular typed node (expression, parameter, etc.), which can lead to
unbalanced set/clear when exploring the solution space (and later on,
crashes). Don't re-insert such information.
This is the same approach taken for type variable bindings, but it's
all pretty unfortunate: partial solutions should only record
information relative to their part of the constraint system, which
would save time and memory during solving. Howver, that's too big a
change for right now.
Fixes rdar://problem/50853028.
When we perform constraint generation while solving, capture the
type mappings we generate as part of the solver scope and solutions,
rolling them back and replaying them as necessary. Otherwise, we’ll
end up with uses of stale type variables, expression/parameter/type-loc
types set twice, etc.
Fixes rdar://problem/50390449 and rdar://problem/50150314.
When calling a function whose parameter specifies a function builder
with a multi-statement closure argument, transform the closure into
a single expression via the function builder. Should the result
type checker, replace the closure body with the single expression.
Add `llvm_unreachable` to mark covered switches which MSVC does not
analyze correctly and believes that there exists a path through the
function without a return value.
Introduce an attribute @_disfavoredOverload that can be used to state
that a particular declaration should be avoided if there is a
successful type-check for a non-@_disfavoredOverload. It's a way to
nudge overload resolution away from particular solutions.
The ConstraintSystem class is on the order of 1000s of bytes in size on
the stacka nd is causing issues with dispatch's 64k stack limit.
This changes most Small data types which store data on the stack to non
small heap based data types.
Previously, an OpaqueUnderlyingType constraint was created only if the
contextual type purpose was CTP_ReturnStmt. Now that there is a
distinct CTP for implicit, single-expression returns, an
OpaqueUnderlyingType constraint needs to be created if that is the CTP.
When type-checking a return statement's result, pass a new
ContextualTypePurpose when that return statement appears in a function
with a single expression. When solving the corresponding constraint
system, the conversion constraint will have a new ConstraintKind. When
matching types, check whether the constraint kind is this new kind,
meaning that the constraint is between a function's single expression
and the function's result. If it is, allow a conversion from
an uninhabited type (the expression's type) to anything (the function's
result type) by adding an uninhabited upcast restriction to the vector
of conversions. Finally, at coercion time, upon encountering this
restriction, call coerceUninhabited, replacing the original expression
with an UninhabitedUpcastExpr. Finally, at SILGen time, treat this
UninhabitedUpcastExpr as a ForcedCheckedCastExpr.
Eliminates the bare ConstraintSystem usage from
typeCheckFunctionBodyUntil, ensuring that the same code path is followed
for all function bodies.
We have a systemic class of issues where noescape types end up bound to
type variables in places that should not. The existing diagnostic for
this is ad-hoc and duplicated in several places but it doesn't actually
address the root cause of the problem.
For now, I've changed all call sites of createTypeVariable() to set the
new flag. I plan on removing enough occurrences of the flag to replicate
the old diagnostics. Then we can continue to refine this over time.