Although I don't plan to bring over new assertions wholesale
into the current qualification branch, it's entirely possible
that various minor changes in main will use the new assertions;
having this basic support in the release branch will simplify that.
(This is why I'm adding the includes as a separate pass from
rewriting the individual assertions)
Remove this bit from function decls and closures.
Instead, for closures, infer it from the presence
of a single return or single expression AST node
in the body, which ought to be equivalent, and
automatically takes result builders into
consideration. We can also completely drop this
query from AbstractFunctionDecl, replacing it
instead with a bit on ReturnStmt.
The "typechecked function body" request was defined to type-check a
function body that is known to be present, and not skipped, and would
assert these conditions, requiring its users to check whether a body
was expected. Often, this means that callers would use `getBody()`
instead, which retrieves the underlying value in whatever form it
happens to be, and assume it has been mutated appropriately.
Make the "typechecked function body" request, triggered by
`getTypecheckedBody()`, more resilient and central. A `NULL` result is
now acceptable, signifying that there is no body. Clients will need to
tolerate NULL results.
* When there is no body but should be one, produce an appropriate
error.
* When there shouldn't be a body but is, produce an appropriate error
* Handle skipping of function bodies here, rather than elsewhere.
Over time, we should move clients off of `getBody` and `hasBody`
entirely, and toward `getTypecheckedBody` or some yet-to-be-introduced
forms like `getBodyAsWritten` for the pre-typechecked body.
For any operation that can throw an error, such as calls, property
accesses, and non-exhaustive do..catch statements, record the thrown
error type along with the conversion from that thrown error to the
error type expected in context, as appropriate. This will prevent
later stages from having to re-compute the conversion sequences.
Parse typed throw specifiers as `throws(X)` in every place where there
are effects specified, and record the resulting thrown error type in
the AST except the type system. This includes:
* `FunctionTypeRepr`, for the parsed representation of types
* `AbstractFunctionDecl`, for various function-like declarations
* `ClosureExpr`, for closures
* `ArrowExpr`, for parsing of types within expression context
This also introduces some serialization logic for the thrown error
type of function-like declarations, along with an API to extract the
thrown interface type from one of those declarations, although right
now it will either be `Error` or empty.
When an accessor macro adds a non-observing accessor to a property, it
subsumes the initializer. We had previously modeled this as removing
the initializer, but doing so means that the initializer could not be
used for type inference and was lost in the AST.
Explicitly mark the initializer as "subsumed" here, and be more
careful when querying the initializer to distinguish between "the
initializer that was written" and "the initializer that will execute"
in more places. This distinction already existed at the
pattern-binding level, but not at the variable-declaration level.
This is the proper fix for the circular reference issue described in
rdar://108565923 (test case in the prior commit).
Provide ASTWalker with a customization point to specify whether to
check macro arguments (which are type checked but never emitted), the
macro expansion (which is the result of applying the macro and is
actually emitted into the source), or both. Provide answers for the
~115 different ASTWalker visitors throughout the code base.
Fixes rdar://104042945, which concerns checking of effects in
macro arguments---which we shouldn't do.
Rather than set closure discriminators in both the parser (for explicit
closures) and then later as part of contextualizing closures (for
autoclosures), do so via a request that sets all of the discriminators
for a given context.
Replace the use of bool and pointer returns for
`walkToXXXPre`/`walkToXXXPost`, and instead use
explicit actions such as `Action::Continue(E)`,
`Action::SkipChildren(E)`, and `Action::Stop()`.
There are also conditional variants, e.g
`Action::SkipChildrenIf`, `Action::VisitChildrenIf`,
and `Action::StopIf`.
There is still more work that can be done here, in
particular:
- SourceEntityWalker still needs to be migrated.
- Some uses of `return false` in pre-visitation
methods can likely now be replaced by
`Action::Stop`.
- We still use bool and pointer returns internally
within the ASTWalker traversal, which could likely
be improved.
But I'm leaving those as future work for now as
this patch is already large enough.
While building a closure to inject `checkExpect` code, clone member
references associated with assignment. Re-using AST nodes is generally
invalid. This is visible with multi-statement closure inference enabled,
because the body is type-checked together with enclosing context
and both elements end up sharing `DeclRefExpr` and `MemberRefExpr`s.
While building a closure to inject `checkExpect` code, clone member
references associated with assignment. Re-using AST nodes is generally
invalid. This is visible with multi-statement closure inference enabled,
because the body is type-checked together with enclosing context
and both elements end up sharing `DeclRefExpr` and `MemberRefExpr`s.
Closurea can become 'async' in one of two ways:
* They can be explicitly marked 'async' prior to the 'in'
* They can be inferred as 'async' if they include 'await' in the body
`Differentiable` conformance derivation now supports
`Differentiable.zeroTangentVectorInitializer`.
There are two potential cases:
1. Memberwise derivation: done when `TangentVector` can be initialized memberwise.
2. `{ TangentVector.zero }` derivation: done as a fallback.
`zeroTangentVectorInitializer` is a closure that produces a zero tangent vector,
capturing minimal necessary information from `self`.
It is an instance property, unlike the static property `AdditiveArithmetic.zero`,
and should be used by the differentiation transform for correctness.
Remove `Differentiable.zeroTangentVectorInitializer` dummy default implementation.
Update stdlib `Differentiable` conformances and tests.
Clean up DerivedConformanceDifferentiable.cpp cruft.
Resolves TF-1007.
Progress towards TF-1008: differentiation correctness for projection operations.
Replace it with the "legacy semantic queries" bit. The remaining client
of this bit is SourceKit, which appears to require this bit be set
conditionally so certain semantic property wrapper requests return
a sentinel value.
We should migrate these requests to a syntactic interface as soon as
possible.
rdar://60516325
* WIP implementation
* Cleanup implementation
* Install backedge rather than storing array reference
* Add diagnostics
* Add missing parameter to ResultFinderForTypeContext constructor
* Fix tests for correct fix-it language
* Change to solution without backedge, change lookup behavior
* Improve diagnostics for weak captures and captures under different names
* Remove ghosts of implementations past
* Address review comments
* Reorder member variable initialization
* Fix typos
* Exclude value types from explicit self requirements
* Add tests
* Add implementation for AST lookup
* Add tests
* Begin addressing review comments
* Re-enable AST scope lookup
* Add fixme
* Pull fix-its into a separate function
* Remove capturedSelfContext tracking from type property initializers
* Add const specifiers to arguments
* Address review comments
* Fix string literals
* Refactor implicit self diagnostics
* Add comment
* Remove trailing whitespace
* Add tests for capture list across multiple lines
* Add additional test
* Fix typo
* Remove use of ?: to fix linux build
* Remove second use of ?:
* Rework logic for finding nested self contexts
Change the various AST transforms to use prebuilt DeclName constants more heavily rather than an ad-hoc mix of Identifiers, string literals, std::strings, and StringRefs with questionable memory management.
Like the last commit, SourceFile is used a lot by Parse and Sema, but
less so by the ClangImporter and (de)Serialization. Split it out to
cut down on recompilation times when something changes.
This commit does /not/ split the implementation of SourceFile out of
Module.cpp, which is where most of it lives. That might also be a
reasonable change, but the reason I was reluctant to is because a
number of SourceFile members correspond to the entry points in
ModuleDecl. Someone else can pick this up later if they decide it's a
good idea.
No functionality change.
Most of AST, Parse, and Sema deal with FileUnits regularly, but SIL
and IRGen certainly don't. Split FileUnit out into its own header to
cut down on recompilation times when something changes.
No functionality change.
It is possible for the SIL optimizers, IRGen, etc. to request information
from the AST that only the type checker can provide, but the type checker
is typically torn down after the “type checking” phase. This can lead to
various crashes late in the compilation cycle.
Keep the type checker instance around as long as the ASTContext is alive
or until someone asks for it to be destroyed.
Fixes SR-285 / rdar://problem/23677338.
The initial version of the debugger testing transform instruments
assignments in a way that allows the debugger to sanity-check its
expression evaluator.
Given an assignment expression of the form:
```
a = b
```
The transform rewrites the relevant bits of the AST to look like this:
```
{ () -> () in
a = b
checkExpect("a", stringForPrintObject(a))
}()
```
The purpose of the rewrite is to make it easier to exercise the
debugger's expression evaluator in new contexts. This can be automated
by having the debugger set a breakpoint on checkExpect, running `expr
$Varname`, and comparing the result to the expected value generated by
the runtime.
While the initial version of this testing transform only supports
instrumenting assignments, it should be simple to teach it to do more
interesting rewrites.
There's a driver script available in SWIFT_BIN_DIR/lldb-check-expect to
simplfiy the process of launching and testing instrumented programs.
rdar://36032055