Based on feedback in PR https://github.com/swiftlang/swift/pull/69460, enabling indexing for synthesized decls because they are usable by users and make sense to appear in the indexstore.
Sets `synthesized` on some additional decls:
- derived `hashInto(...)`
- Objc properties and methods derived from Objc protocols
https://github.com/apple/swift/issues/67446
Although I don't plan to bring over new assertions wholesale
into the current qualification branch, it's entirely possible
that various minor changes in main will use the new assertions;
having this basic support in the release branch will simplify that.
(This is why I'm adding the includes as a separate pass from
rewriting the individual assertions)
Parse typed throw specifiers as `throws(X)` in every place where there
are effects specified, and record the resulting thrown error type in
the AST except the type system. This includes:
* `FunctionTypeRepr`, for the parsed representation of types
* `AbstractFunctionDecl`, for various function-like declarations
* `ClosureExpr`, for closures
* `ArrowExpr`, for parsing of types within expression context
This also introduces some serialization logic for the thrown error
type of function-like declarations, along with an API to extract the
thrown interface type from one of those declarations, although right
now it will either be `Error` or empty.
Replace the `front()` and `back()` accessors on `InheritedTypes` with dedicated
functions for accessing the start and end source locations of the inheritance
clause. NFC.
Wrap the `InheritedEntry` array available on both `ExtensionDecl` and
`TypeDecl` in a new `InheritedTypes` class. This class will provide shared
conveniences for working with inherited type clauses. NFC.
This is a futile attempt to discourage future use of getType() by
giving it a "scary" name.
We want people to use getInterfaceType() like with the other decl kinds.
This is phase-1 of switching from llvm::Optional to std::optional in the
next rebranch. llvm::Optional was removed from upstream LLVM, so we need
to migrate off rather soon. On Darwin, std::optional, and llvm::Optional
have the same layout, so we don't need to be as concerned about ABI
beyond the name mangling. `llvm::Optional` is only returned from one
function in
```
getStandardTypeSubst(StringRef TypeName,
bool allowConcurrencyManglings);
```
It's the return value, so it should not impact the mangling of the
function, and the layout is the same as `std::optional`, so it should be
mostly okay. This function doesn't appear to have users, and the ABI was
already broken 2 years ago for concurrency and no one seemed to notice
so this should be "okay".
I'm doing the migration incrementally so that folks working on main can
cherry-pick back to the release/5.9 branch. Once 5.9 is done and locked
away, then we can go through and finish the replacement. Since `None`
and `Optional` show up in contexts where they are not `llvm::None` and
`llvm::Optional`, I'm preparing the work now by going through and
removing the namespace unwrapping and making the `llvm` namespace
explicit. This should make it fairly mechanical to go through and
replace llvm::Optional with std::optional, and llvm::None with
std::nullopt. It's also a change that can be brought onto the
release/5.9 with minimal impact. This should be an NFC change.
Direct lookup relied in primary file checking to have filled in the
protocol type stored in the ImplementsAttr. This was already wrong
with multi-file test cases in non-WMO mode, and crashed in the
ASTPrinter if printing a declaration in a non-primary file.
I don't have a standalone test case that is independent of my
upcoming ASTPrinter changes, but this is a nice cleanup regardless.
When deriving witnesses for protocol conformances within an
actor-isolated type, make those members 'nonisolated'. In the case
where this would work, for example because some of the state is
mutable, don't allow derivation of those witnesses.
Fixes rdar://90233250.
Abstract away the TupleExpr gunk and expose
`getLHS` and `getRHS` accessors. This is in
preparation for completely expunging the use
of TupleExpr as an argument list.
There are a number of occurances that create implicit `Switch`s by passing `SourceLoc()` for all location paramters. Refactor those occurances out to a separate `createImplicit` method that automatically fills the locations with invalid source locations.
At the moment, if there is an error in the `switch` statement expression or if the `{` is missing, we return `nullptr` from `parseStmtSwitch`, but we consume tokens while trying to parse the `switch` statement. This causes the AST to not contain any nodes for the tokens that were consumed while trying to parse the `switch` statement.
While this doesn’t cause any issues during compilation (compiling fails anyway so not having the `switch` statement in the AST is not a problem) this causes issues when trying to complete inside an expression that was consumed while trying to parse the `switch` statement but doesn’t have a representation in the AST. The solver-based completion approach can’t find the expression that contains the completion token (because it’s not part of the AST) and thus return empty results.
To fix this, make sure we are always creating a `SwitchStmt` when consuming tokens for it.
Previously, one could always assume that a `SwitchStmt` had a valid `LBraceLoc` and `RBraceLoc`. This is no longer the case because of the recovery. In order to form the `SwitchStmt`’s `SourceRange`, I needed to add a `EndLoc` property to `SwitchStmt` that keeps track of the last token in the `SwitchStmt`. Theoretically we should be able to compute this location by traversing the right brace, case stmts, subject expression, … in reverse order until we find something that’s not missing. But if the `SubjectExpr` is an `ErrorExpr`, representing a missing expression, it might have a source range that points to one after the last token in the statement (this is due to the way the `ErrorExpr` is being constructed), therefore returning an invalid range. So overall I thought it was easier and safer to add another property.
Fixes rdar://76688441 [SR-14490]
`SourceEntityWalker` had an unbalanced `walkToDeclPre` and
`walkToDeclPost`, ie. `walkToDeclPost` could be called even though
`walkToDeclPre` was not. Specifically, this would occur for both
`OperatorDecl` and `PrecedenceGroupDecl` declarations.
These could both be added to the `if` in `walkToDeclPost`, but this
seems fairly errorprone in general - especially as new decls are added.
Indeed, there's already declarations that are being skipped because they
aren't explicitly tested for in `walkToDeclPre`, ie.
`PatternBindingDecl`.
Instead of skipping if not explcitly handled, only skip running the
`SEWalker` walk methods if the declaration is implicit (and not a
constructor decl, see TODO). This should probably also always visit
children, with various decls changed to become implicit (eg.
TopLevelCodeDecl), but we can do that later - breaks too many tests for
now.
This change exposed a few parameter declarations that were missing their
implicit flag, as well as unbalanced walk methods in `RangeResolver`.
We'll need this to get the right 'selfDC' when name lookup
finds a 'self' declaration in a capture list, eg
class C {
func bar() {}
func foo() {
_ = { [self] in bar() }
}
}
Add `async` to the type system. `async` can be written as part of a
function type or function declaration, following the parameter list, e.g.,
func doSomeWork() async { ... }
`async` functions are distinct from non-`async` functions and there
are no conversions amongst them. At present, `async` functions do not
*do* anything, but this commit fully supports them as a distinct kind
of function throughout:
* Parsing of `async`
* AST representation of `async` in declarations and types
* Syntactic type representation of `async`
* (De-/re-)mangling of function types involving 'async'
* Runtime type representation and reconstruction of function types
involving `async`.
* Dynamic casting restrictions for `async` function types
* (De-)serialization of `async` function types
* Disabling overriding, witness matching, and conversions with
differing `async`
Like switch cases, a catch clause may now include a comma-
separated list of patterns. The body will be executed if any
one of those patterns is matched.
This patch replaces `CatchStmt` with `CaseStmt` as the children
of `DoCatchStmt` in the AST. This necessitates a number of changes
throughout the compiler, including:
- Parser & libsyntax support for the new syntax and AST structure
- Typechecking of multi-pattern catches, including those which
contain bindings.
- SILGen support
- Code completion updates
- Profiler updates
- Name lookup changes