Structurally prevent a number of common anti-patterns involving generic
signatures by separating the interface into GenericSignature and the
implementation into GenericSignatureBase. In particular, this allows
the comparison operators to be deleted which forces callers to
canonicalize the signature or ask to compare pointers explicitly.
The weak imported flag is now only set if the attribute is unconditionally
weak linked, which is the case when it or one of its parent contexts has a
@_weakLinked attribute.
To correctly handle weak linking based availability with serialized SIL
functions, we need to serialize the actual version tuple when the SIL function
was introduced. This is because the deployment target of the client app can
be older than the deployment target that the original module was built with.
Fixes <rdar://problem/52783668>.
Now that GenericSignatures store their single unique GenericEnvironment,
we can remove similar logic from deserialization to preserve identity
of GenericEnvironments.
...fulfilling the promised audit from 0747d9a339. No intended
functionality change /other/ than the order of already-unsorted lists.
This affected a number of SIL tests that relied on deserialization
order matching the original source order; I have no idea why the old
hash logic would make that the case. If we think that's a valuable
property, we should serialize a list of functions in addition to the
iterable table. (Maybe just in SIB mode?)
A generic environment is always serialized as a GenericSignature with
a lazily-recreated environment, though sometimes it has to include
extra info specifically for generic environments used by SIL. The code
that was doing this claimed a bit for disambiguating between the two,
shrinking the permitted size of a compiled module from 2^31 bits to
2^30. (The code isn't just needlessly complicated; GenericEnvironments
used to be serialized with more information.)
Rather than have two representations for GenericEnvironmentID, this
commit just drops it altogether in favor of referencing
GenericSignatures directly. This causes a negligible file size
shrinkage for swiftmodules in addition to eliminating the problematic
disambiguation bit.
For now, the Deserialization logic will continue to cache
GenericEnvironments that are used directly by Deserialization, but
really that should probably be done at the AST level. Then we can
simplify further to ModuleFile tracking a plain list of
GenericSignatures.
Rather than storing the set of input requirements in a
(SIL)SpecializeAttr, store the specialized generic signature. This
prevents clients from having to rebuild the same specialized generic
signature on every use.
This provides a singular instruction for convert an unmanaged value to a ref,
then strong_retain it. I expanded the definition of UNCHECKED_REF_STORAGE to
include these copy like instructions. This instruction is valid in all SIL.
The reason why I am adding this instruction is that currently when we emit an
access to an unowned (unsafe) ivar, we use an unmanaged_to_ref and a strong
retain. This can look to the optimizer like a strong retain that can potentially
be optimized. By combining the two together into a new instruction, we can avoid
this potential problem since the pattern matching will break.
`ModuleFile::error` was being used both for errors of initial parse
and configuration (non-fatal) and format errors during actual
deserialization (fatal, indicating a corrupted module). Split out the
latter to `ModuleFile::fatal()` (to go with the existing
`ModuleFile::fatal(llvm::Error)`) and be more consistent about
explicitly setting statuses for the former.
Since 'fatal()' is always fatal, this also allows deleting dummy
recovery code that would never be used in practice.
This flag is set by DefinitInitialization if the lifetime of the stored value is controlled dynamically.
If the flag is set, it's not (easily) possibly to statically calculate the lifetime of the stored value.
Ownership is truly a property not of a declaration, but of a function body. So
it makes sense to just match what we deserialize.
This also helps us to avoid mismatches if we lower ownership from a function,
delete it, and then relink it.
I also used this as an opportunity to clean up where we set that flag in
deserialization to only happen in one place for both declarations/definitions.
This indicates that the "self" argument to the current function is always dynamically of the exact
static base class type, allowing metadata accesses in IRGen to use the local self metadata to answer
metadata requests for the class type. Set this attribute on allocating entry points of designated
inits, which is one of the most common places where we emit redundant metadata accesses.
I found this issue by inspection. I do not think it is actually possible to hit
this bug today since:
1. To hit the bug one would need to link in a definition of a function when we
do not have a pre-existing function. If we create the declaration first, then we
set the flag correctly when we deserialize the body of the function.
2. We today always set a callback on functions when we link in the body and
always strip ownership/set that flag. So we /should/ always set it correctly.
That being said, it is better to match what was actually serialized as close as
possible.
To distinguish between classes which have the same name (but are in different contexts).
Fixes a miscompile if classes with the same name are used from a different module.
SR-10634
rdar://problem/50538534
The ownership kind is Any for trivial types, or Owned otherwise, but
whether a type is trivial or not will soon depend on the resilience
expansion.
This means that a SILModule now uniques two SILUndefs per type instead
of one, and serialization uses two distinct sentinel IDs for this
purpose as well.
For now, the resilience expansion is not actually used here, so this
change is NFC, other than changing the module format.
Using an anonymous union in KeyPathPatternComponent instead of the weird void * in SetterAndIdKind
Added TupleElement kind to KeyPathComponentKindEncoding
Written basic SIL keypath serialization tests
Deleted or edited some old Swift-level tuple key path tests
It does not take ownership of its non-trivial arguments, is a trivial
function type and therefore must not be destroyed. The compiler must
make sure to extend the lifetime of non-trivial arguments beyond the
last use of the closure.
%objc = copy_value %0 : $AnObject
%closure = partial_apply [stack] [callee_guaranteed] %16(%obj) : $@convention(thin) (@guaranteed AnObject) -> ()
%closure2 = mark_dependence %closure : $@noescape @callee_guaranteed () -> () on %obj : $AnObject
%user = function_ref @useClosure : $@convention(thin) (@noescape @callee_guaranteed () -> ()) -> ()
apply %user(%closure2) : $@convention(thin) (@noescape @callee_guaranteed () -> ()) -> ()
dealloc_stack %closure : $() ->()
destroy_value %obj : $AnObject // noescape closure does not take ownership
SR-904
rdar://35590578
This means that:
1. SILGenPattern always borrows the object before it emits a case.
2. Any cast with this cast has a +0 result.
NOTE: That one can not use this with address types (so we assert if you
pass this checked_cast_addr_br).
NOTE: Once we have opaque values, checked_cast_br of a guaranteed value will
lower to a copy + checked_cast_addr_br (assuming the operation is a consuming
cast). To make sure this does not become a problem in terms of performance, we
will need a pass that can transform SILGenPattern +0 cases to +1 cases. This is
something that we have talked about in the past and I think it is reasonable to
implement.
This is an incremental commit towards fixing SILGenPattern for ownership.
rdar://29791263
SILWitnessTable::Entry already contains a superset of what was supported
by SILDefaultWitnessTable::Entry, the latter of which only had “no entry”
and “method” states. Make SILDefaultWitnessTable::Entry an alias for
SILWitnessTable::Entry, and unify all of the parsing/printing/
(de)serialization logic.
This silences the instances of the warning from Visual Studio about not all
codepaths returning a value. This makes the output more readable and less
likely to lose useful warnings. NFC.
...instead of std::vector, which (1) will always make separate
allocations, and (2) has features and overhead we don't need
I don't expect this to actually affect performance too much, but it
seems more correct for what Serialization needs anyway.
The string-keyed tables don't actually need Identifier keys on the
serialization side -- no reason to persist these in the ASTContext's
string table either.
We were already doing this for cross-references in SIL function bodies,
but by doing it for the SIL index tables too we can shrink the size of
the module file a bit. (Not that this is a super-important metric, but
still.)
Not everything that goes into the "identifier table" is actually an
Identifier. If we don't need the string to be uniqued in the
ASTContext, don't bother calling getIdentifier.
May save some memory usage (and a string table lookup) for
deserialization.
I changed all of the places that used end_borrow_argument to use end_borrow.
NOTE: I discovered in the process of this patch that we are not verifying
guaranteed block arguments completely. I disabled the tests here that show this
bad behavior and am going to re-enable them with more tests in a separate PR.
This has not been a problem since SILGen does not emit any such arguments as
guaranteed today. But once I do the SILGenPattern work this will change.
rdar://33440767
This does not eliminate the entrypoints on SILBuilder yet. I want to do this in
two parts so that it is functionally easier to disentangle changing the APIs
above SILBuilder and changing the underlying instruction itself.
rdar://33440767