When Swift passes search paths to clang, it does so directly into the HeaderSearch. That means that those paths get ordered inconsistently compared to the equivalent clang flag, and causes inconsistencies when building clang modules with clang and with Swift. Instead of touching the HeaderSearch directly, pass Swift search paths as driver flags, just do them after the -Xcc ones.
Swift doesn't have a way to pass a search path to clang as -isystem, only as -I which usually isn't the right flag. Add an -Isystem Swift flag so that those paths can be passed to clang as -isystem.
rdar://93951328
The new `DECL_ATTR_FEATURE_REQUIREMENT` macro in DeclAttr.def can be used to declare that an attribute should only be available when a related language feature is enabled.
Effects:
• `#if hasAttribute(someAttr)` will return `false` unless the required feature is enabled.
• Code completion will not include the attribute unless the required feature is enabled.
• `TypeChecker::checkDeclAttributes()` diagnoses non-implicit uses of the attribute.
Add this mechanism and use it to tie @abi to the ABIAttribute feature. Also design tests for it.
Rather than exposing an `addFile` member on
ModuleDecl, have the `create` members take a
lambda that populates the files for the module.
Once module construction has finished, the files
are immutable.
Providing these is a bit of a layering violation,
the parser shouldn't care about these options (there
does seem to be one current use of `TypeCheckerOpts`
in the parser for designated operator types, but
that's a legacy feature that was never officially
supported).
The "buffer ID" in a SourceFile, which is used to find the source file's
contents in the SourceManager, has always been optional. However, the
effectively every SourceFile actually does have a buffer ID, and the
vast majority of accesses to this information dereference the optional
without checking.
Update the handful of call sites that provided `nullopt` as the buffer
ID to provide a proper buffer instead. These were mostly unit tests
and testing programs, with a few places that passed a never-empty
optional through to the SourceFile constructor.
Then, remove optionality from the representation and accessors. It is
now the case that every SourceFile has a buffer ID, simplying a bunch
of code.
This makes sure that Swift respects `-Xcc -stdlib=libc++` flags.
Clang already has existing logic to discover the system-wide libc++ installation on Linux. We rely on that logic here.
Importing a Swift module that was built with a different C++ stdlib is not supported and emits an error.
The Cxx module can be imported when compiling with any C++ stdlib. The synthesized conformances, e.g. to CxxRandomAccessCollection also work. However, CxxStdlib currently cannot be imported when compiling with libc++, since on Linux it refers to symbols from libstdc++ which have different mangled names in libc++.
rdar://118357548 / https://github.com/swiftlang/swift/issues/69825
Separate swift-syntax libs for the compiler and for the library plugins.
Compiler communicates with library plugins using serialized messages
just like executable plugins.
* `lib/swift/host/compiler/lib_Compiler*.dylib`(`lib/CompilerSwiftSyntax`):
swift-syntax libraries for compiler. Library evolution is disabled.
* Compiler (`ASTGen` and `swiftIDEUtilsBridging`) only depends on
`lib/swift/host/compiler` libraries.
* `SwiftInProcPluginServer`: In-process plugin server shared library.
This has one `swift_inproc_plugins_handle_message` entry point that
receives a message and return the response.
* In the compiler
* Add `-in-process-plugin-server-path` front-end option, which specifies
the `SwiftInProcPluginServer` shared library path.
* Remove `LoadedLibraryPlugin`, because all library plugins are managed
by `SwiftInProcPluginServer`
* Introduce abstract `CompilerPlugin` class that has 2 subclasses:
* `LoadedExecutablePlugin` existing class that represents an
executable plugin
* `InProcessPlugins` wraps `dlopen`ed `SwiftInProcPluginServer`
* Unified the code path in `TypeCheckMacros.cpp` and `ASTGen`, the
difference between executable plugins and library plugins are now
abstracted by `CompilerPlugin`
Relying on the corresponding field in the '-explicit-swift-module-map-file' provided by the driver.
Only bridging headers require a module map because that's what aids header include resolution. With lazy module loading today, '.modulemap' parsing which happens when instantiating Clang is responsible for associating headers with modules. Then upon encountering a header include inside the bridging header the compiler knows which module corresponds to said header and is then able to load explicitly-provided PCM for that module. For all other module dependencies, they are only ever queried by-name from Swift, so '.modulemap' parsing is not necessary.
Generated interfaces for Clang modules used to try printing normal
comments between decls extracted from the header text. That was because
doc-comment was not common in C/ObjC headers. But mainly because of
"import as member feature" Clang decls aren't printed in the order as
they appear in the header file, the logic determinig which comment
belongs to which decl was not working property. We've decided to remove
that feature and only print the proper doc-comments as it has been
getting common.
rdar://93731287
This has two benefits:
1. We can now report ambiguous variable types
2. We are more robust in the generation of results for declarations inside closures. If the closure has an error, we won’t apply the solution to the AST and thus any cursor info that tried to get types out of the AST would fail.
rdar://123845208
LLVM is presumably moving towards `std::string_view` -
`StringRef::startswith` is deprecated on tip. `SmallString::startswith`
was just renamed there (maybe with some small deprecation inbetween, but
if so, we've missed it).
The `SmallString::startswith` references were moved to
`.str().starts_with()`, rather than adding the `starts_with` on
`stable/20230725` as we only had a few of them. Open to switching that
over if anyone feels strongly though.
There were a handful of different places trying to enable the
feature-flag when the stdlib has been built with the feature enabled.
This change cleans that up and unifies it in one spot for all sub-tools
like sil-opt and sil-func-extractor to pick-up.
Obsolete the `-enable-swift3-objc-inference` option and related options by
removing support for inferring `@objc` attributes using Swift 3 rules.
Automated migration from Swift 3 has not been supported by the compiler for
many years.
Merge `$<Feature>` and `hasFeature` implementations.
- `$<Feature>` did not support upcoming language features.
- `hasFeature` did not support promoted language features and also
didn't take into account `Options` in `Features.def`.
Remove `Options` entirely, it was always one of three cases:
- `true`
- `langOpts.hasFeature`
- `hasSwiftSwiftParser`
Since `LangOptions::hasFeature` should always be used anyway, it's no
longer necessary. `hasSwiftSwiftParser` can be special cased when adding
the default promoted language features (by removing those features).
Resolves rdar://117917456.
Prviously swift-ide-test enabled importing of ObjC forward declarations
with the -enable-objc-forward-declarations option. The compiler enables
the same behavior via -enable-upcoming-feature.
Now that swift-ide-test also supports upcoming-features, make enabling
the ImportObjcForwardDeclarations language feature have the expected
effect in swift-ide-test.
The old flag is also removed.