My change 983b75e1cf broke
-warn-long-expression-type-checking because now the
ExpressionTimer is not instantiated by default and that
entire code path is skipped.
Change it so that if -warn-long-expression-type-checking
is passed in, we still start the timer, we just don't
ever consider it to have 'expired'.
Fixes rdar://problem/152998878.
This flag was not experimental for any good reason; it should always be
enabled. The flag only exists so we can introduce a new API:
UnsafeMutablePointer.mutableSpan. Supported compilers cannot handle the new API.
rdar://154247502 (Promote feature NonescapableAccessorOnTrivial to be
non-experimental)
(cherry picked from commit 3dc0e622bac5576bdb29ab343b46f6492dd4b9ff)
Non-escapable struct definitions often have inicidental integer fields that are
unrelated to lifetime. Without an explicit initializer, the compiler would infer
these fields to be borrowed by the implicit intializer.
struct CountedSpan: ~Escapable {
let span: Span<Int>
let i: Int
/* infer: @lifetime(copy span, borrow i) init(...) */
}
This was done because
- we always want to infer lifetimes of synthesized code if possible
- inferring a borrow dependence is always conservative
But this was the wrong decision because it inevitabely results in lifetime
diagnostic errors elsewhere in the code that can't be tracked down at the use
site:
let span = CountedSpan(span: span, i: 3) // ERROR: span depends on the lifetime of this value
Instead, force the author of the data type to specify whether the type actually
depends on trivial fields or not. Such as:
struct CountedSpan: ~Escapable {
let span: Span<Int>
let i: Int
@lifetime(copy span) init(...) { ... }
}
This fix enables stricter diagnostics, so we need it in 6.2.
Fixes rdar://152130977 ([nonescapable] confusing diagnostic message when a
synthesized initializer generates dependence on an Int parameter)
(cherry picked from commit 8789a686fed869e3cd7bc4e748a443e71df464e1)
'@preconcurrency' imports open up memory safety holes with respect to
Sendable, which are diagnosed under strict memory safety + strict
concurrency checking. Allow one to write '@unsafe' on those imports to
silence the diagnostic about it.
OSSA lifetime canonicalization can take a very long time in certain
cases in which there are large basic blocks. to mitigate this, add logic
to skip walking the liveness boundary for extending liveness to dead
ends when there aren't any dead ends in the function.
Updates `DeadEndBlocks` with a new `isEmpty` method and cache to
determine if there are any dead-end blocks in a given function.
(cherry picked from commit 1f3f830fc7)
To guard the new UnsafeMutablePointer.mutableSpan APIs.
This allows older compilers to ignore the new APIs. Otherwise, the type checker
will crash on the synthesized _read accessor for a non-Escapable type:
error: cannot infer lifetime dependence on the '_read' accessor because 'self'
is BitwiseCopyable, specify '@lifetime(borrow self)'
I don't know why the _read is synthesized in these cases, but apparently it's
always been that way.
Fixes: rdar://153773093 ([nonescapable] add a compiler feature to guard
~Escapable accessors when self is trivial)
(cherry picked from commit cc357f4f32)
Explanation: Shared references imported from C++ were not considered
safe. This is a widely used feature and this fix is blocking the users
from adopting strictly memory safe Swift.
Issue: rdar://151039766
Risk: Low, the fix only changes what declarations are considered safe.
Testing: Regression test added.
Original PR: #82203
Reviewer: @egorzhdan @fahadnayyar
These are special declarations that are synthesized by the compiler
or a macro and warnings about them are non-actionable.
(cherry picked from commit 17976c7775)
Currently, when we jump-to-definition for decls that are macro-expanded
from Clang imported decls (e.g., safe overloads generated by
@_SwiftifyImport), setLocationInfo() emits a bongus location pointing to
a generated buffer, leading the IDE to try to jump to a file that does
not exist.
The root cause here is that setLocationInfo() calls getOriginalRange()
(earlier, getOriginalLocation()), which was not written to account for
such cases where a macro is generated from another generated buffer
whose kind is 'AttributeFromClang'.
This patch fixes setLocationInfo() with some refactoring:
- getOriginalRange() is inlined into setLocationInfo(), so that the
generated buffer-handling logic is localized to that function. This
includes how it handles buffers generated for ReplacedFunctionBody.
- getOriginalLocation() is used in a couple of other places that only
care about macros expanded from the same buffer (so other generated
buffers not not relevant). This "macro-chasing" logic is simplified
and moved from ModuleDecl::getOriginalRange() to a free-standing
function, getMacroUnexpandedRange() (there is no reason for it to be
a method of ModuleDecl).
- GeneratedSourceInfo now carries an extra ClangNode field, which is
populated by getClangSwiftAttrSourceFile() when constructing
a generated buffer for an 'AttributeFromClang'. This could probably
be union'ed with one or more of the other fields in the future.
rdar://151020332
(cherry picked from commit 44aba1382d)
Without this, llvm would sometimes wrongly assume there's no indirect
accesses and the optimizations can lead to a runtime crash, by
optimizing away initializing options properly.
Resolves rdar://152548190
Escaping solver-allocated types into a nested allocation arena is
problematic since we can e.g lazily compute the `ContextSubMap` for a
`NominalOrBoundGenericNominalType`, which is then destroyed when we
exit the nested arena. Ensure we don't pass any types with type
variables or placeholders to `typesSatisfyConstraint`.
rdar://152763265
Currently the note is going to point to the "callee" but that is
incorrect when the failure is related to an argument of a call.
Detect this situation in `RValueTreatedAsLValueFailure::diagnoseAsNote`
and produce a correct note.
Resolves: rdar://150689994
(cherry picked from commit 6bbc101a98)
them to hex strings when creating anonymous context descriptors. This
aims to solve a problem when LLDB reads reflection metadata directly
from local binary files instead of downloading them from in-process
memory.
LLDB's MemoryReader implements this to convert the file address into
an in-process address, so mangled names created from instance metadata
can be matched with the field info data read from the local files.
rdar://152743797
(cherry picked from commit 540df142d7)
When the CustomAvailability experimental feature is enabled, make it an error
to specify an unrecognized availability domain name. Also, add these
diagnostics to a diagnostic group so that developers can control their behavior
when they are warnings.
Resolves rdar://152741624.
Create a path that swift-frontend can execute an uncached job from
modules built with CAS based explicit module build. The new flag
-import-module-from-cas will allow an uncached build to load module
from CAS, and combined with source file from real file system to build
the current module. This allows quick iterations that bypasses CAS,
without full dependency scanning every time in between.
rdar://152441866
No warnings with minimal checking, warnings with `strict-concurrency=complete` and
if declaration is `@preconcurrency` until next major swift version.
Resolves: rdar://151911135
Resolves: https://github.com/swiftlang/swift/issues/81739
(cherry picked from commit e326cd00930ff042ba1595e7793af9aaf0208b97)