Non-escapable struct definitions often have inicidental integer fields that are
unrelated to lifetime. Without an explicit initializer, the compiler would infer
these fields to be borrowed by the implicit intializer.
struct CountedSpan: ~Escapable {
let span: Span<Int>
let i: Int
/* infer: @lifetime(copy span, borrow i) init(...) */
}
This was done because
- we always want to infer lifetimes of synthesized code if possible
- inferring a borrow dependence is always conservative
But this was the wrong decision because it inevitabely results in lifetime
diagnostic errors elsewhere in the code that can't be tracked down at the use
site:
let span = CountedSpan(span: span, i: 3) // ERROR: span depends on the lifetime of this value
Instead, force the author of the data type to specify whether the type actually
depends on trivial fields or not. Such as:
struct CountedSpan: ~Escapable {
let span: Span<Int>
let i: Int
@lifetime(copy span) init(...) { ... }
}
This fix enables stricter diagnostics, so we need it in 6.2.
Fixes rdar://152130977 ([nonescapable] confusing diagnostic message when a
synthesized initializer generates dependence on an Int parameter)
(cherry picked from commit 8789a686fed869e3cd7bc4e748a443e71df464e1)
'@preconcurrency' imports open up memory safety holes with respect to
Sendable, which are diagnosed under strict memory safety + strict
concurrency checking. Allow one to write '@unsafe' on those imports to
silence the diagnostic about it.
To guard the new UnsafeMutablePointer.mutableSpan APIs.
This allows older compilers to ignore the new APIs. Otherwise, the type checker
will crash on the synthesized _read accessor for a non-Escapable type:
error: cannot infer lifetime dependence on the '_read' accessor because 'self'
is BitwiseCopyable, specify '@lifetime(borrow self)'
I don't know why the _read is synthesized in these cases, but apparently it's
always been that way.
Fixes: rdar://153773093 ([nonescapable] add a compiler feature to guard
~Escapable accessors when self is trivial)
(cherry picked from commit cc357f4f32)
These are special declarations that are synthesized by the compiler
or a macro and warnings about them are non-actionable.
(cherry picked from commit 17976c7775)
Currently, when we jump-to-definition for decls that are macro-expanded
from Clang imported decls (e.g., safe overloads generated by
@_SwiftifyImport), setLocationInfo() emits a bongus location pointing to
a generated buffer, leading the IDE to try to jump to a file that does
not exist.
The root cause here is that setLocationInfo() calls getOriginalRange()
(earlier, getOriginalLocation()), which was not written to account for
such cases where a macro is generated from another generated buffer
whose kind is 'AttributeFromClang'.
This patch fixes setLocationInfo() with some refactoring:
- getOriginalRange() is inlined into setLocationInfo(), so that the
generated buffer-handling logic is localized to that function. This
includes how it handles buffers generated for ReplacedFunctionBody.
- getOriginalLocation() is used in a couple of other places that only
care about macros expanded from the same buffer (so other generated
buffers not not relevant). This "macro-chasing" logic is simplified
and moved from ModuleDecl::getOriginalRange() to a free-standing
function, getMacroUnexpandedRange() (there is no reason for it to be
a method of ModuleDecl).
- GeneratedSourceInfo now carries an extra ClangNode field, which is
populated by getClangSwiftAttrSourceFile() when constructing
a generated buffer for an 'AttributeFromClang'. This could probably
be union'ed with one or more of the other fields in the future.
rdar://151020332
(cherry picked from commit 44aba1382d)
Escaping solver-allocated types into a nested allocation arena is
problematic since we can e.g lazily compute the `ContextSubMap` for a
`NominalOrBoundGenericNominalType`, which is then destroyed when we
exit the nested arena. Ensure we don't pass any types with type
variables or placeholders to `typesSatisfyConstraint`.
rdar://152763265
Currently the note is going to point to the "callee" but that is
incorrect when the failure is related to an argument of a call.
Detect this situation in `RValueTreatedAsLValueFailure::diagnoseAsNote`
and produce a correct note.
Resolves: rdar://150689994
(cherry picked from commit 6bbc101a98)
When the CustomAvailability experimental feature is enabled, make it an error
to specify an unrecognized availability domain name. Also, add these
diagnostics to a diagnostic group so that developers can control their behavior
when they are warnings.
Resolves rdar://152741624.
No warnings with minimal checking, warnings with `strict-concurrency=complete` and
if declaration is `@preconcurrency` until next major swift version.
Resolves: rdar://151911135
Resolves: https://github.com/swiftlang/swift/issues/81739
(cherry picked from commit e326cd00930ff042ba1595e7793af9aaf0208b97)
Unlike with implicitly-built modules (prior to Swift 6 mode), explicitly-built modules require that all search paths be specified explicitly and no longer inherit search paths serialized into discovered Swift binary modules. This behavior was never intentional and is considered a bug. This change adds a diagnostic note to a scan failure: for each binary Swift module dependency, the scanner will attempt to execute a dependency scanning query for each serialized search path inside that module. If such diagnostic query returns a result, a diagnostic will be emitted to inform the user that the dependency may be found in the search path configuration of another Swift binary module dependency, specifying which search path contains the "missing" module, and stating that such search paths are not automatically inherited by the current compilation.
Initially this declaration is going to be used to determine
per-file default actor isolation i.e. `using @MainActor` and
`using nonisolated` but it could be extended to support other
file-global settings in the future.
(cherry picked from commit aabfebec03)
This is a new restriction that folks are sure to run into, so provide
it with some actionable documentation. Fixes rdar://152450956.
(cherry picked from commit 9f0dda5417)
Inference of conformance isolation needs to check whether all of the
witnesses are nonisolated. However, witness checking looks at
conformance isolation. To break this reference cycle, split the
conformance isolation request into two requests: a "raw" request that
looks at explicitly-specified isolation, and the existing one that
also performs inference. The existing one builds on the "raw" one, as
does a separate path for the conformance checker.
Fixes rdar://152461344.
When compiling for visionOS, iOS availability attributes are remapped into the
visionOS availability domain automatically. While the version remapping was
being performed correctly, there was a regression that caused the platform name
to be printed incorrectly in many diagnostics. Whenever an iOS version is
remapped to a visionOS version, availability diagnostics will now present
those versions as visionOS versions instead of iOS versions.
Resolves rdar://146293165.