Previously, inverses were only accounted-for in inheritance clauses.
This batch of changes handles inverses appearing in other places, like:
- Protocol compositions
- `some ~Copyable`
- where clauses
with proper attribution of default requirements in their absence.
Conflicts:
- `lib/AST/TypeCheckRequests.cpp` renamed `isMoveOnly` which requires
a static_cast on rebranch because `Optional` is now a `std::optional`.
By default the compiler will now replace the bodies of unavailable functions
with stubs that call `_diagnoseUnavailableCodeReached()` instead.
Resolves rdar://116019744
Introduce the upcoming feature `FullTypedThrows`. When enabled, infer
the error type of a `throw` statement based on its original type,
instead of always being `any Error`. This is technically a
source-breaking change, hence the upcoming feature flag.
Always print the real module name for references in private
swiftinterfaces, ignoring export-as declarations. Keep using the
export-as name for the public swiftinterface only.
The flag `ModuleInterfaceExportAs` used to enable this behavior and
we're removing it to make it the default.
rdar://115922907
Update swift cache key computation mechanism from one cache key per
output, to one cache key per primary input file (for all outputs that
associated with that input).
The new schema allows fewer cache lookups while still preserving most of
the flexibility for batch mode and incremental mode.
Instead of emitting an warning to the diagnostic engine, return the
plugin loading error as the result of the request. So that the user
can decide to emit it as a warning or an error.
This is to match the one SwiftDriver expects, so that we generate API
descriptors when they are specified in supplementary output files.
Addresses rdar://116809713
The feature InternalImportsByDefault makes imports default to internal instead
of public. Applying the Swift 6 behavior of SE-0409 in Swift 5.
Let's use only that flag to track the Swift 6 behavior as well instead
of separately checking for the language version.
Introduce two modes of bridging:
* inline mode: this is basically how it worked so far. Using full C++ interop which allows bridging functions to be inlined.
* pure mode: bridging functions are not inlined but compiled in a cpp file. This allows to reduce the C++ interop requirements to a minimum. No std/llvm/swift headers are imported.
This change requires a major refactoring of bridging sources. The implementation of bridging functions go to two separate files: SILBridgingImpl.h and OptimizerBridgingImpl.h.
Depending on the mode, those files are either included in the corresponding header files (inline mode), or included in the c++ file (pure mode).
The mode can be selected with the BRIDGING_MODE cmake variable. By default it is set to the inline mode (= existing behavior). The pure mode is only selected in certain configurations to work around C++ interop issues:
* In debug builds, to workaround a problem with LLDB's `po` command (rdar://115770255).
* On windows to workaround a build problem.