Rather than registering individual IRGen passes
when we want to execute them, store function
pointers to all the pass constructors on the
ASTContext. This will make it easier to requestify
the execution of pass pipelines.
As part of this, we have to change the type export rules to
prevent `@convention(c)` function types from being used in
exported interfaces if they aren't serializable. This is a
more conservative version of the original rule I had, which
was to import such function-pointer types as opaque pointers.
That rule would've completely prevented importing function-pointer
types defined in bridging headers and so simply doesn't work,
so we're left trying to catch the unsupportable cases
retroactively. This has the unfortunate consequence that we
can't necessarily serialize the internal state of the compiler,
but that was already true due to normal type uses of aggregate
types from bridging headers; if we can teach the compiler to
reliably serialize such types, we should be able to use the
same mechanisms for function types.
This PR doesn't flip the switch to use Clang function types
by default, so many of the clang-function-type-serialization
FIXMEs are still in place.
The `@noDerivative` attribute marks the non-differentiability parameters of a
`@differentiable` function type. All parameters except those marked with
`@noDerivative` are differentiability parameters.
For example, `@differentiable (Float, @noDerivative Float) -> Float` is only
differentiable with respect to its first parameter.
The `@noDerivative` attribute is represented as a
`SILParameterDifferentiability` bit on `SILParameterInfo`.
Add round-trip serialization tests.
Resolves TF-872.
Motivation: `GenericSignatureImpl::getCanonicalSignature` crashes for
`GenericSignature` with underlying `nullptr`. This led to verbose workarounds
when computing `CanGenericSignature` from `GenericSignature`.
Solution: `GenericSignature::getCanonicalSignature` is a wrapper around
`GenericSignatureImpl::getCanonicalSignature` that returns the canonical
signature, or `nullptr` if the underlying pointer is `nullptr`.
Rewrite all verbose workarounds using `GenericSignature::getCanonicalSignature`.
We recently added some checking to ensure that a method override's
generic signature does not have any generic requirements not
satisfied by the base method.
Loosening requirements in the other direction was allowed, because
it means the derived method can be called on potentially more types
than the base method.
However, if the generic signatures don't match, a thunk must be
emitted. While we correctly determined whether a thunk should be
emitted, the thunk had the wrong generic signature, and therefore
the wrong calling convention, which would cause crashes at runtime.
Fixes <rdar://problem/57429775>.
This reverts commit e805fe486e, which reverted
the change earlier. The problem was caused due to a simultaneous change to some
code by the PR with parsing and printing for Clang function types (#28737)
and the PR which introduced Located<T> (#28643).
This commit also includes a small change to make sure the intersecting region
is fixed: the change is limited to using the fields of Located<T> in the
`tryParseClangType` lambda.
Introduce a new kind of constraint, the "value witness" constraint,
which captures a reference to a witness for a specific protocol
conformance. It otherwise acts like a more restricted form of a "value
member" constraint, where the specific member is known (as a
ValueDecl*) in advance.
The constraint is effectively dependent on the protocol
conformance itself; if that conformance fails, mark the type variables
in the resolved member type as "holes", so that the conformance
failure does not cascade.
Note that the resolved overload for this constraint always refers to
the requirement, rather than the witness, so we will end up recording
witness-method references in the AST rather than concrete references,
and leave it up to the optimizers to perform devirtualization. This is
demonstrated by the SIL changes needed in tests, and is part of the
wider resilience issue with conformances described by
rdar://problem/22708391.
Currently DeclName uses an inline representation for compound names with no argument labels. This is more compact, but it costs a spare bit that we need for other purposes. This commit switches over to representing this using a separate CompoundDeclName allocation with zero trailing argument labels instead.