This is a verification routine that is only invoked in PassManager
destructors. I am going to use this to ensure that the
PassManagerVerifierAnalysis only runs at such points (even when sil-verify-all
is enabled) since it is too expensive to run otherwise.
NOTE: The default implementation of verifyFull in this commit is a no-op. I
wanted to have verify() be the default implementation of verifyFull(), but I do
not have more time to invest in this and it seems to catch /real/ bugs, albeit
bugs unrelated to pass manager notification verification. Instead I am going to
file an SR for someone to look at it since I need to move on from this work back
to semantic SIL. At least we will not have notification failure issues anymore
and thus a large correctness issue in the compiler has been fixed. Forward
progress!
rdar://42301529
This enables us to have state independent of the liveness of the SILFunction's
that we are tracking.
I also changed the verifier to implement only verifyFull instead of verify to
ensure that when we run with sil-verify-all this only runs at the end of pass
manager pipelines.
rdar://42301529
I also thought I was fixing a performance issue by changing
invalidateFunction not to /insert/ new entries into the map, but
I guess those entries were present in practice. So this is just
a cleanup to make ownership easier.
The invariant is that this analysis should be able to stay in sync with the list
of functions stored in SILModule's function list. If any functions are
added/deleted then analyses can get out of sync with the state of the underlying
SILModule.
Some notes:
1. This is currently disabled by default since there are a bunch of
violations of this in the compiler. I am in the process of fixing violations.
Some examples: the linker and global opt.
2. This is a no-op in non-assert builds.
3. The full verification will only happen when -sil-verify-all is enabled.
Otherwise, we only check that when we delete a function, we had state for the
function.
rdar://42301529
This name makes it clear that the function has not yet been deleted and also
contrasts with the past tense used in the API notifyAddedOrModifiedFunction to
show that said function has already added/modified the function.
The name notifyAddFunction is actively harmful since the pass manager uses this
entrypoint to notify analyses of added *OR* modified functions. It is up to the
caller analysis to distinguish in between these cases.
I am not vouching for the design, just trying to make names match the
current behavior.
I believe that this was just a typo from a long time ago. Calling this parameter
a SILAnalysisTy is actively misleading since as a result it seems to a naive
reading that one should be writing a recursive template:
```
class MyAnalysis : public FunctionAnalysisBase<MyAnalysis> { ... }
```
Instead of passing in the function info of the derived analysis, i.e.:
```
class MyAnalysisFunctionInfo { ... }
class MyAnalysis : public FunctionAnalysisBase<MyAnalysisFunctionInfo> { ... }
```
I also added some documentation to that affect onto FunctionAnalysisBase.
Generally in the SIL/SILOptimizer libraries we have been putting kinds in the
swift namespace, not a nested scope in a type in swift (see ValueKind as an
example of this).
Some parts were using the more modern style that we are using in the optimizer
that involves having ivars and local variables be camelCase instead of
CamelCase.
The current dumping format consists of 1 row of information per function. This
will become unweildy to write patterns for when I add additional state to
FunctionInfo.
Instead, this commit converts the dumping format of the caller analysis into a
multi line yaml format. This yaml format looks as follows:
---
calleeName: closure1
hasCaller: false
minPartialAppliedArgs: 1
partialAppliers:
- partial_apply_one_arg
- partial_apply_two_args1
fullAppliers:
...
This can easily expand over time as we expand the queries that caller analysis
can answer.
As an additional advantage, there are definitely yaml parsers that can handle
multiple yaml documents in sequence in a stream. This means that by running via
sil-opt the caller-analysis-printer pass, one now will get a yaml description of
the caller analysis state, perfect and ready for analysis.
This converts a DenseMap to a SmallMapVector and a SetVector to a
SmallSetVector. Both of these create large malloced data structures by
default. This really makes no sense when there are many functions that don't use
a partial apply or many applies.
Additionally, by changing the DenseMap to a MapVector container, this commit is
eliminating a potential source of non-determinism in the compiler since often
times we are iterating over the DenseMap to produce the results. Today all of
the usages of the DenseMap in this way are safe, but to defensively future proof
this analysis, it makes sense to use a MapVector here.
I am tuning a new argument explosion heuristic to reduce code-size. One part of
the heuristic I am playing with is the part of the algorithm that attempts to
figure out if we could eliminate additonal arguments after performing
owned->guaranteed an additional release when we run FSO a second time. Today we
do this unconditionally. I am trying to do it in a more conservative way where
we only do it if we know that we aren't going to increase the number of
arguments too much.
rdar://41146023
This is particularly egrigious since we are only /reading/ from the DenseSet. So
we are basically mallocing/copying a DenseSet just to read from it... I don't
think I need to say more.
rdar://41146023
@effects is too low a level, and not meant for general usage outside
the standard library. Therefore it deserves to be underscored like
other such attributes.
Use AccessedStorageAnalysis to find access markers with no nested conflicts.
This optimization analyzes the scope of each access to determine
whether it contains a potentially conflicting access. If not, then it
can be demoted to an instantaneous check, which still catches
conflicts on any enclosing outer scope.
This removes up to half of the runtime calls associated with
exclusivity checking.
The actual algorithm used here has not changed at all so this is basically a NFC
commit. What this PR does is change the underlying algorithm to return the
operands that it computes internally rather than transforming the operand list
into the user list internally. This enables the callers of the optimization to
find the operand number related to the uses. This makes working with
instructions with multiple operands much easier since one does not need to mess
around with rederiving the operand number from the user instruction/SILValue
pair.
getRCUsers() works now by running getRCUses() internally and then maps the
operand list to the user list.
rdar://38196046
An interprocedural analysis pass that summarizes the dynamically
enforced formal accesses within a function. These summaries will be
used by a new AccessEnforcementOpts pass to locally fold access scopes
and remove dynamic checks based on whole module analysis.
Make this a generic analysis so that it can be used to analyze any
kind of function effect.
FunctionSideEffect becomes a trivial specialization of the analysis.
The immediate need for this is to introduce an new
AccessedStorageAnalysis, although I foresee it as a generally very
useful utility. This way, new kinds of function effects can be
computed without adding any complexity or compile time to
FunctionSideEffects. We have the flexibility of computing different
kinds of function effects at different points in the pipeline.
In the case of AccessedStorageAnalysis, it will compute both
FunctionSideEffects and FunctionAccessedStorage in the same pass by
implementing a simple wrapper on top of FunctionEffects.
This cleanup reflects my feeling that nested classes make the code
extremely unreadable unless they are very small and either private or
only used directly via its parent class. It's easier to see how these
classes compose with a flat type system.
In addition to enabling new kinds of function effects analyses, I
think this makes the implementation of side effect analysis easier to
understand by separating concerns.
The EscapeAnalysis:canEscapeTo function was actually broken, because it did not detect all escapes of a reference/pointer.
I completely replaced the implementation with the correct one (canObjectOrContentEscapeTo) and removed the now obsolete canObjectOrContentEscapeTo.
Fixes a miscompile.
rdar://problem/39161309