Follow-up to 3ed3774e07. On Apple OSs that don't have the new
Objective-C runtime function 'objc_setHook_getImageName', override the
system definition of 'class_getImageName' by literally rewriting
symbol tables at run time.
Yes, you read that correctly.
The low-level part of this patch was written by Greg Parker, then
simplified and tweaked by me to fit the Swift coding style. Don't try
this at home; it comes with all sorts of caveats and won't actually
work on this year's iOS. (Fortunately we don't need it there, because
that will have the new ObjC entry point.)
The rest of the patch is pretty straightforward: the replacement
implementation calls the code that supports Swift objects (the same
code we use on newer OSs), which then chains back to the original
system implementation of class_getImageName. May we never have to
touch this again.
rdar://problem/41535552
Previously, swiftImageInspectionShared generated one specific library at
`lib/libswiftImageInspectionShared.a` for only the main arch and sdk.
Generic cross compilation and various changes to the build system to get
cross compilation to work will require swiftImageInspectionShared to
generate libraries at the proper subdirectory. Change the outputs to
agree with paths such as `lib/swift/linux/x86_64`
When building with assertions enabled, link the demangle tree dumper into
the runtime and remote mirrors libraries. This makes debugging demangling-related issues a whole lot easier.
* SR-106: New floating-point `description` implementation
This replaces the current implementation of `description` and
`debugDescription` for the standard floating-point types with a new
formatting routine based on a variation of Florian Loitsch' Grisu2
algorithm with changes suggested by Andrysco, Jhala, and Lerner's 2016
paper describing Errol3.
Unlike the earlier code based on `sprintf` with a fixed number of
digits, this version always chooses the optimal number of digits. As
such, we can now use the exact same output for both `description` and
`debugDescription` (except of course that `debugDescription` provides
full detail for NaNs).
The implementation has been extensively commented; people familiar with
Grisu-style algorithms should find the code easy to understand.
This implementation is:
* Fast. It uses only fixed-width integer arithmetic and has constant
memory and time requirements.
* Simple. It is only a little more complex than Loitsch' original
implementation of Grisu2. The digit decomposition logic for double is
less than 300 lines of standard C (half of which is common arithmetic
support routines).
* Always Accurate. Converting the decimal form back to binary (using an
accurate algorithm such as Clinger's) will always yield exactly the
original binary value. For the IEEE 754 formats, the round-trip will
produce exactly the same bit pattern in memory. This is an essential
requirement for JSON serialization, debugging, and logging.
* Always Short. This always selects an accurate result with the minimum
number of decimal digits. (So that `1.0 / 10.0` will always print
`0.1`.)
* Always Close. Among all accurate, short results, this always chooses
the result that is closest to the exact floating-point value. (In case
of an exact tie, it rounds the last digit even.)
This resolves SR-106 and related issues that have complained
about the floating-point `description` properties being inexact.
* Remove duplicate infinity handling
* Use defined(__SIZEOF_INT128__) to detect uint128_t support
* Separate `extracting` the integer part from `clearing` the integer part
The previous code was unnecessarily obfuscated by the attempt to combine
these two operations.
* Use `UINT32_MAX` to mask off 32 bits of a larger integer
* Correct the expected NaN results for 32-bit i386
* Make the C++ exceptions here consistent
Adding a C source file somehow exposed an issue in an unrelated C++ file.
Thanks to Joe Groff for the fix.
* Rename SwiftDtoa to ".cpp"
Having a C file in stdlib/public/runtime causes strange
build failures on Linux in unrelated C++ files.
As a workaround, rename SwiftDtoa.c to .cpp to see
if that avoids the problems.
* Revert "Make the C++ exceptions here consistent"
This reverts commit 6cd5c20566.
Commit 0c42b57962 ("ELF: restructure image metadata registration")
removed the swift_install_in_component lines for both
swiftImageInspectionStatic and swiftImageInspectionShared libraries,
even though only the former library was removed in that change. As a
result, the swiftImageInspectionShared was not being built or
installed. This should fix SR-7038.
rdar://problem/37710244
The dumper method dumps:
1. The container's metadata pointer.
2. A pointer to the container's value.
3. Whether or not said value is stored inline in the container.
This provides a general overview that can be used even when working with SIL
code in the debugger by grabbing a pointer to swift Anys and then calling the
c++ any method upon them.
The verifier is intended to be used in conjunction with ASAN for maximum
effect to catch use-after-frees of existential boxes.
While implementing this I refactored some code from ExistentialTypeMetadata into
methods on OpaqueExistentialContainer. ExistentialTypeMetadata just calls these
methods now instead of implementing the code inline.
The old-style mirrors were the basis for non-custom, reflection based Mirrors. As part of removing old-style mirrors, reflection based Mirrors are reimplemented without them. Reflection.mm is deleted and replaced with ReflectionMirror.mm, which borrows a chunk of the old code but presents a simpler API to the Swift side. ReflectionMirror.swift then uses that API to implement a reflection-based Mirror init.
rdar://problem/20356017
* Remove RegisterPreservingCC. It was unused.
* Remove DefaultCC from the runtime. The distinction between C_CC and DefaultCC
was unused and inconsistently applied. Separate C_CC and DefaultCC are
still present in the compiler.
* Remove function pointer indirection from runtime functions except those
that are used by Instruments. The remaining Instruments interface is
expected to change later due to function pointer liability.
* Remove swift_rt_ wrappers. Function pointers are an ABI liability that we
don't want, and there are better ways to get nonlazy binding if we need it.
The fully custom wrappers were only needed for RegisterPreservingCC and
for optimizing the Instruments function pointers.
Various TypeDecoder clients will depend on having the "bare" nominal
type declaration demangled node for looking up nominal type descriptors,
so move the generic argument-stripping code into TypeDecoder.
Swift class metadata has a bit to distinguish it from non-Swift Objective-C
classes. The stable ABI will use a different bit so that stable Swift and
pre-stable Swift can be distinguished from each other.
No bits are actually changed yet. Enabling the new bit needs to wait for
other coordination such as libobjc.
rdar://35767811
Restructure the COFF metadata handling to use the linker section
grouping to emit section start/stop markers in the appropriate location.
This allows us to lookup the sections statically without having to the
walk the entire image structure.
Introduce a constructor for PE/COFF binaries. This will ensure that the
registration occurs for all modules appropriately. This should resolve
rdar://problem/19045112. The registration should occur prior to
`DllMain` being invoked from `DllMainCRTStartup`.
Restructure the ELF handling to be completely agnostic to the OS.
Rather than usng the loader to query the section information, use the
linker to construct linker tables and synthetic markers for the
beginning and of the table. Save off the values of these pointers and
pass them along through the constructor to the runtime for registration.
This removes the need for the begin/end objects. Remove the special
construction of the begin/end objects through the special assembly
constructs, preferring to do this in C with a bit of inline assembly to
ensure that the section is always allocated.
Remove the special handling for the various targets, the empty object
file can be linked on all the targets.
The new object file has no requirements on the ordering. It needs to
simply be injected into the link.
Name the replacement file `swiftrt.o` mirroring `crt.o` from libc. Merge
the constructor and the definition into a single object file.
This approach is generally more portable, overall simpler to implement,
and more robust.
Thanks to Orlando Bassotto for help analyzing some of the odd behaviours
when switching over.
This adds the swift include path manually to the builds for the stubs
and the runtime. This has no impact for the build currently. However,
adding the additional include directory will enable a standalone build
for the stdlib.
* Revert "[strip -ST] Disable runtime stack trace dumping on Darwin when asserts are disabled."
This reverts commit 6bc28ff1c9.
* Bring back important fixes from the revert of 6bc28ff1c9.
* Change swift::swift_reportError to only print the backtrace in assert builds (swift::warning prints backtrace always).
This commit disables runtime stack trace dumping via dladdr on Darwin when
asserts are disabled.
This stack trace dumping was added as a way to improve the ability to debug the
compiler for compiler developers. This is all well and good but having such a
feature always enabled prevents us from reducing the size of the swift standard
library by eliminating the swift nlist.
rdar://31372220
When cross-compiling for android ARM, it is possible that the system
linker does not support the target. However, in order to cross-compile
the target runtime, we need to adjust the linker to the target linker.
If one is not specified, fall back to the current behaviour of using the
system linker.
These changes caused a number of issues:
1. No debug info is emitted when a release-debug info compiler is built.
2. OS X deployment target specification is broken.
3. Swift options were broken without any attempt any recreating that
functionality. The specific option in question is --force-optimized-typechecker.
Such refactorings should be done in a fashion that does not break existing
users and use cases.
This reverts commit e6ce2ff388.
This reverts commit e8645f3750.
This reverts commit 89b038ea7e.
This reverts commit 497cac64d9.
This reverts commit 953ad094da.
This reverts commit e096d1c033.
rdar://30549345
This patch splits add_swift_library into two functions one which handles
the simple case of adding a library that is part of the compiler being
built and the second handling the more complicated case of "target"
libraries, which may need to build for one or more targets.
The new add_swift_library is built using llvm_add_library, which re-uses
LLVM's CMake modules. In adapting to use LLVM's modules some of
add_swift_library's named parameters have been removed and
LINK_LIBRARIES has changed to LINK_LIBS, and LLVM_LINK_COMPONENTS
changed to LINK_COMPONENTS.
This patch also cleans up libswiftBasic's handling of UUID library and
headers, and how it interfaces with gyb sources.
add_swift_library also no longer has the FILE_DEPENDS parameter, which
doesn't matter because llvm_add_library's DEPENDS parameter has the same
behavior.
This breaks the build on exherbo, which uses target tripled linker
names. Furthermore, the default name on unix-ish systems for the linker
is `ld`. This can be a symlink to a specific implementation, usually
named as ld.<name> (e.g. `ld.bfd` or `ld.gold`). Use the cmake variable
for the linker rather than hardcoding the name.
- Create separate swift_begin.o/swift_end.o for lib/swift and
lib/swift_static. The static swift_begin.o does not call
swift_addNewDSOImage() at startup.
- Update ToolChains.cpp to use the correct swift_begin.o/swift_end.o
files for the `-static-stdlib` and `-static-executable` options.
- Rename swift::addNewDSOImage() to swift_addNewDSOImage() and
export using SWIFT_RUNTIME_EXPORT.
- Move ELF specific parts of ImageInspection.h into
ImageInspectionELF.h.
- For ELF targets, keep track of shared objects as they are
dynamically loaded so that section data can be added to
the protocol conformance and type metadata caches after
initialisation (rdar://problem/19045112).
The runtime and stubs are built for ALL targets, not specific ones. This allows
us to configure when cross-compiling to Windows again. Collapse the dual
addition of the swiftRuntime into a single build. This unifies the runtime
build for the apple and non-Apple SDKs. The difference here was the ObjC
interop sources. In order to deal with that unification add a CPP macro to
indicate whether the interop sources should be included or not.
- Add ImageInspectionStatic.cpp to lookup protocol conformance
and metadata sections in static binaries
- For Linux, build libswiftImageInspectionShared.a and
libswiftImageInspectionStatic.a for linking with libswiftCore.a.
This allows static binaries to be built without linking to
libdl. libswiftImageInspectionShared (ImageInspectionELF.cpp) is
automatically compiled into libswiftCore.so
- Adds -static-executable option to swiftc to use along with
-emit-executable that uses linker arguments in
static-executable-args.lnk. This also requires a libicu
to be compiled using the --libicu which has configure options
that dont require libdl for accessing ICU datafiles
- Static binaries only work on Linux at this time
The code we use to interface with the platform dynamic linker is turning into a rat's nest of conditionals that's hard to maintain and extend. Since ELF, Mach-O, and PE platforms have pretty fundamentally different dynamic linker interfaces and capabilities, it makes sense to factor that code into a separate file per-platform, instead of trying to conditionalize the logic in-line. This patch factors out a much simpler portable interface for lazily kicking off the protocol conformance and type metadata lookup caches, and factors the guts out into separate MachO, ELF, and Win32 backends. This should also be a much cleaner interface to interface static binary behavior into, assisting #5349.
The `add_swift_library` CMake function takes an optional `TARGET_SDKS`
parameter. When used, only CMake targets for the specified SDKs are added.
Refactor `stdlib/public/runtime` to use this parameter. This also eliminates
logic that determines additional flags or source files to include based on
`SWIFT_HOST_VARIANT`, which makes it easier for hosts to add targets for
different platforms.
Rather than having Sema provide a default implementation of
Error._code when needed, introduce a runtime function to extract the
default code, so that we can provide a default implementation via a
protocol extension in the standard library.
If the Swift error wrapped in a _SwiftNativeNSError box conforms to
Hashable, the box now uses the Swift's conformance to Hashable.
Part of rdar://problem/27574348.