Temporarily reverting @_specialize because stdlib unit tests are
failing on an internal branch during deserialization.
This reverts commit e2c43cfe14, reversing
changes made to 9078011f93.
This attribute can be attached to generic functions. The attribute's
arguments must be a list of concrete types to be substituted in the
function's generic signature. Any number of specializations may be
associated with a generic function.
This attribute provides a hint to the compiler. At -O, the compiler
will generate the specified specializations and emit calls to the
specialized code in the original generic function guarded by type
checks.
The current attribute is designed to be an internal tool for
performance experimentation. It does not affect the language or
API. This work may be extended in the future to add user-visible
attributes that do provide API guarantees and/or direct dispatch to
specialized code.
This attribute works on any generic function: a freestanding function
with generic type parameters, a nongeneric method declared in a
generic class, a generic method in a nongeneric class or a generic
method in a generic class. A function's generic signature is a
concatenation of the generic context and the function's own generic
type parameters.
e.g.
struct S<T> {
var x: T
@_specialize(Int, Float)
mutating func exchangeSecond<U>(u: U, _ t: T) -> (U, T) {
x = t
return (u, x)
}
}
// Substitutes: <T, U> with <Int, Float> producing:
// S<Int>::exchangeSecond<Float>(u: Float, t: Int) -> (Float, Int)
With the exception of a specific whitelist of cases where the
Foundation module defines conformances to _ObjectiveCBridgeable for
standard library types, only permit an _ObjectiveCBridgeable
conformance in the same module as the type that's conforming to the
protocol. Among other things, this prevents the optimizer from
concluding that a dynamic cast between a Swift value type and its
bridged Objective-C class type can never succeed. See
34ff1c8e6d
for the optimizer issue. As part of this, bring the whitelist in sync
with reality, now that the compiler enforces it.
Let's say I am a good citizen and document my private symbols:
/** My TOP SECRET DOCUMENTATION */
private class Foo {
}
When I go to distribute the compiled binary, I find out my private
documentation is distributed as well:
$ swiftc test.swift -emit-module -module-name "test"
$ strings test.swiftdoc
My TOP SECRET DOCUMENTATION
/** My TOP SECRET DOCUMENTATION */
If a client can't use a symbol (e.g. it's private [or internal and not
-enable-testing]) don't emit the documentation for a symbol in the
swiftdoc.
Fixes: SR-762, rdar://21453624
The test coverage implements this truth table:
| visibility | -enable-testing | documentation? |
|------------|-----------------|----------------|
| private | no | ❌ |
| internal | no | ❌ |
| public | no | ✅ |
| private | yes | ❌ |
| internal | yes | ✅ |
| public | yes | ✅ |
Modified the existing comments test coverage to expect non-public
documentation not to be emitted.
Don't rely on existing comment structure
Refuse to emit comments if the decl cannot actually have one. To
accomplish this, we move `canHaveComment` into the Decl instance. It
must also be marked `const`, since one of its existing usages operates
on a const pointer.
Perform fewer checks when serializing the standard library.
It appears we were only using this to see if an associated type was
derived or defaulted. This code didn't mesh well with the other stuff
I was doing for default implementations, so I'd rather rip it out and
just rely on calling 'isImplicit' to check for derived associated
types instead.
Note that there's a small change of behavior -- if an associated type
is derived for one conformance, and then used as a witness in another,
we were previously only marking it as defaulted in the first one,
but now it is marked as defaulted in both. I do not believe this has
any meaningful consequences.
Migrate the check for whether a given type is representable in
Objective-C, which is currently used to verify when @objc can be
inferred or verify that an explicitly-written @objc is well-formed,
from Sema into a set of queries on the Type within the AST library, so
it can be used in other parts of the compiler.
As part of this refactoring, clean up and improve a number of aspects
of this code:
* Unify the "trivially representable" and "representable" code paths
into a single code path that covers these cases. Clarify the
different levels of "representable" we have in both the code and
in comments.
* Distinguish between representation in C vs. representation in
Objective-C. While we aren't using this now, I'm anticipating it
being useful to allow exporting C interfaces via @_cdecl (or
similar).
* Eliminate the special cases for bridging String/Array/Dictionary/Set
with their Foundation counterparts; we now consult
_ObjectiveCBridgeable conformances exclusively to get this
information.
* Cache foreign-representation information on the ASTContext in a
manner that will let us more easily get the right answer across
different contexts while providing more sharing than the TypeChecker
version.
Annoyingly, this only seemed to fix a small class of error where we
were permitting Unsafe(Mutable)Pointer<T> to be representable in
Objective-C when T was representable but not trivially representable,
e.g., T=String or T=AnyObject.Type.
This was added at some point to make 'import Foundation' faster in the REPL.
What we really care about though is not delaying synthesis of the rawValue
accessors (those are synthesized on demand anyway), but delaying the
conformance check to RawRepresentable.
We actually do not need to pre-append the USR of the extended nominal;
a short mangling-incompatible prefix will sufficiently do the trick.
Suggested by @jrose-apple.
This reverts commit 052d2d0a69.
The only actual issue with the original change was a missing change to
the UIApplicationMain SILGen test, which needs to build SILGen
overlays to execute properly; -enable-source-import doesn't suffice.
We did not serialize them because getting USR for extensions is tricky (USRs are
usually for value decls). This commit starts to make up an USR for an extension by combining
the extended nominal's USR with the USR of the first value member of the extension. We use
this made-up USR to associate doc comments when (de)serializing them.
D'oh, forgot to resolve a FIXME in my protocol commit. Now working there
too except that it's giving USRs on the original protocol instead of the
extension. It's not clear how to get back to the extension from the
archetype though.
rdar://problem/25128561
Pass through the original Type in addition to the TypeDecl so that we
can distinguish DynamicSelfType with underlying ClassType from just any
old ClassType.
rdar://problem/25158493
Treat it like the static Self type, which is good enough for producing
USRs in CursorInfo. This doesn't handle class dynamic self, which needs
some kind of API change to printTypeRef to make it work.
rdar://problem/25128561
Introduce a new entrypoint to _ObjectiveCBridgeable,
_unconditionallyBridgeFromObjectiveC, which handles unconditional
bridging from an optional Objective-C object (e.g., an NSString) to
its bridged Swift type. Use it in SILGen to perform NSString -> String
bridging rather than the custom entry point.
Another small step toward generalized bridging.
Split up parsing of typealias and associatedtype, including dropping a
now unneeded ParseDeclOptions flag.
Then made typealias in a protocol valid, and act like you would
hope for protocol conformance purposes (i.e. as an alias possibly
involved in the types of other func/var conformances, not as a hidden
generic param in itself).
Also added support for simple type aliases in generic constraints. Aliases
to simple (non-sugared) archetype types (and also - trivially - aliases to
concrete types) can now be part of same-type constraints.
The strategy here is to add type aliases to the tree of
PotentialArchetypes, and if they are an alias to an archetype, also to
immediately find the real associated type and set it as the
representative for the PA. Thus the typealias PA node becomes just a
shortcut farther down into the tree for purposes of lookup and
generating same type requirements.
Then the typealias PA nodes need to be explicitly skipped when walking
the tree for building archetype types and other types of requirements,
in order to keep from getting extra out-of-order archetypes/witness
markers of the real associated type inserted where the typealias is
defined.
Any constraint with a typealias more complex than pointing to a single
nested associated type (e.g. `typealias T = A.B.C.D`), will now get a
specialized diagnoses.
If the resulting function type contains an ErrorType, this is an indicator that
something else is wrong. Bail out in this case.
This happened if an enum case was referenced inside the where-clause and treated
as a type.