This is an attribute that gets put on an import in library FooKit to
keep it from being a requirement to import FooKit. It's not checked at
all, meaning that in this form it is up to the author of FooKit to
make sure nothing in its API or ABI depends on the implementation-only
dependency. There's also no debugging support here (debugging FooKit
/should/ import the implementation-only dependency if it's present).
The goal is to get to a point where it /can/ be checked, i.e. FooKit
developers are prevented from writing code that would rely on FooKit's
implementation-only dependency being present when compiling clients of
FooKit. But right now it's not.
rdar://problem/48985979
...in preparation for me adding a third kind of import, making the
existing "All" kind a problem. NFC, except that I did rewrite the
ClangModuleUnit implementation of getImportedModules to be simpler!
It's a pretty obscure feature (and one we wish we didn't need), but
sometimes API is initially exposed through one module in order to
build another one, and we want the canonical presented name to be
something else. Push this concept into Swift's AST properly so that
other parts of the compiler stop having to know that this is a
Clang-specific special case.
No functionality change in this commit; will be used in the next
commit.
Add a bit to the module to determine whether the dependency’s stored bit pattern is a hash or an mtime.
Prebuilt modules store a hash of their dependencies because we can’t be sure their dependencies will have the same modtime as when they were built.
A module compiled with `-enable-private-imports` allows other modules to
import private declarations if the importing source file uses an
``@_private(from: "SourceFile.swift") import statement.
rdar://29318654
Previously, the fast path for nested types only worked when the nested
type was defined in a Swift module or a Clang module without an
overlay; this is because it was originally designed to fix circularity
issues when merging partial modules for a single target. By having a
Swift overlay module pass through requests for nested types to the
underlying Clang module, we get the fast-path behavior in more cases.
(The one case where it /won't/ kick in is if the overlay has a nested
type that shadows a nested type from the Clang module, but that's
probably pretty rare!)
BCRecordLayout currently assumes that the layout described in source
always matches the layout in the bitstream being read. Since we want
swiftdocs to be a forward-compatible format, avoid using it for
deserialization.
(In the future, we may want to augment BCRecordLayout to handle
records with more fields than expected. For now, though, this is a
sufficient change.)
The functionality change in this commit is that the control block in a
swiftdoc file is validated rather than just being ignored. Tests in
following commit.
Added the 'Module::getPrecedenceGroups' API to separate precedence group lookup
from 'Module::lookupVisibleDecls', which together with 'FileUnit::lookupVisibleDecls',
to which the former is forwarded, are expected to look up only 'ValueDecl'. In particular, this
prevents completions like Module.PrecedenceGroup.
Swift currently checks if an imported module has a deployment target
compatible with what’s currently being compiled. For a resilient
module, though, you really want to know the /oldest/ deployment target
the library supports, not the one it was most recently compiled with,
and we don’t currently save that information. Disable this check for
now when the module is resilient.
(Why not do this on the serialization side? Because the deployment
target you compile with is still relevant when trying to match the
compilation environment as closely as possible, which LLDB tries to
do. It's also just useful information for debugging the compiler.)
rdar://problem/42903218
...instead of std::vector, which (1) will always make separate
allocations, and (2) has features and overhead we don't need
I don't expect this to actually affect performance too much, but it
seems more correct for what Serialization needs anyway.
- getAsDeclOrDeclExtensionContext -> getAsDecl
This is basically the same as a dyn_cast, so it should use a 'getAs'
name like TypeBase does.
- getAsNominalTypeOrNominalTypeExtensionContext -> getSelfNominalTypeDecl
- getAsClassOrClassExtensionContext -> getSelfClassDecl
- getAsEnumOrEnumExtensionContext -> getSelfEnumDecl
- getAsStructOrStructExtensionContext -> getSelfStructDecl
- getAsProtocolOrProtocolExtensionContext -> getSelfProtocolDecl
- getAsTypeOrTypeExtensionContext -> getSelfTypeDecl (private)
These do /not/ return some form of 'this'; instead, they get the
extended types when 'this' is an extension. They started off life with
'is' names, which makes sense, but changed to this at some point. The
names I went with match up with getSelfInterfaceType and
getSelfTypeInContext, even though strictly speaking they're closer to
what getDeclaredInterfaceType does. But it didn't seem right to claim
that an extension "declares" the ClassDecl here.
- getAsProtocolExtensionContext -> getExtendedProtocolDecl
Like the above, this didn't return the ExtensionDecl; it returned its
extended type.
This entire commit is a mechanical change: find-and-replace, followed
by manual reformatted but no code changes.
We previously shied away from this in order to not /accidentally/
depend on it, but it becomes interesting again with textual
interfaces, which can certainly be read by humans. The cross-file
order is the order of input files, which is at least controllable by
users.
Switch a number of callers of the Type-based lookupQualified() over to
the newer (and preferred) declaration-based lookupQualified(). These are
the easy ones; NFC.
llvm::Expected/llvm::Error require that the error is not just checked
but explicitly handled. Since we're currently recovering as if nothing
happened, we need to use llvm::consumeError to throw the error info
away.
rdar://problem/40738521
This can only happen in one case today: a module imports a bridging
header, but the header on disk has disappeared, and now we need to
fall back to the (often inadequate) version that's stored inside the
swiftmodule file. Even if the module fails to load, the bridging
header has already been imported, and so anything else that happens
might still emit diagnostics and need that text to be alive, which
means we need to keep the buffer alive too.
This reverts commit bb16ee049d,
reversing changes made to a8d831f5f5.
It's not sufficient to solve the problem, and the choices were to do
something more complicated, or just take a simple brute force
approach. We're going with the latter.
This can't arise from a clean build, but it can happen if you have
products lingering in a search path and then either rebuild one of
the modules in the cycle, or change the search paths.
The way this is implemented is for each module to track whether its
imports have all been resolved. If, when loading a module, one of its
dependencies hasn't resolved all of its imports yet, then we know
there's a cycle.
This doesn't produce the best diagnostics, but it's hard to get into
this state in the first place, so that's probably okay.
https://bugs.swift.org/browse/SR-7483
ModuleDecl::forAllVisibleModules() now has a includeLinkOnlyModules
parameter. This is intended to be used when computing the set of
libraries to autolink.
Allow substitution maps to be serialized directly (via an ID), writing out
the replacement types and conformances as appropriate. This is a more
efficient form of serialization than the current SubstitutionList approach,
because it maintains uniqueness of substitution maps within a module file,
and is a step toward eliminating SubstitutionList entirely.