For reasons not entirely clear yet, this can cause problems in the
compiler when some modules bring in the same names via the Darwin
module (see <rdar://problem/18184795>). Use SwiftShims instead.
Swift SVN r21646
The syntax being reverted added busywork and noise to the common case
where you want to say "I have the right address, but the wrong type,"
without adding any real safety.
Also it eliminated the ability to write UnsafePointer<T>(otherPointer),
without adding ".self" to T. Overall, it was not a win.
This reverts commits r21324 and r21342
Swift SVN r21424
Previously, it was possible to write Unsafe[Mutable]Pointer(x) and have
Swift deduce the pointee type based on context. Since reinterpreting
memory is a fundamentally type-unsafe operation, it's better to be
explicit about conversions from Unsafe[Mutable]Pointer<T> to
Unsafe[Mutable]Pointer<U>. This change is consistent with the move from
reinterpretCast(x) to unsafeBitCast(x, T.self).
Also, we've encoded the operations of explicitly adding or removing
mutability as properties, so that adding mutability can be separated
from wild reinterpretCast'ing, a much more severe form of unsafety.
Swift SVN r21324
In answering a forum post I noiced that I wanted this and it was
missing.
Also, extensive comments
Also, rename the length: init parameter to count:. When writing the
comments for the init function it became painfully clear why we use
"count" is better than "length" especially around pointers and memory:
the former is much less easy to mistake for "length in bytes". Plus
it's consistent with the new ".count" property
Swift SVN r20609
There is some follow-up work remaining:
- test/stdlib/UnicodeTrie test kills the type checker without manual type annotations. <rdar://problem/17539704>
- test/Sema/availability test raises a type error on 'a: String == nil', which we want, but probably not as a side effect of string-to-pointer conversions. I'll fix this next.
Swift SVN r19477
...unless the type has less accessibility than the protocol, in which case
they must be as accessible as the type.
This restriction applies even with access control checking disabled, but
shouldn't affect any decls not already marked with access control modifiers.
Swift SVN r19382
As before, there may be more things marked @public than we actually want
public. Judicious use of the frontend option -disable-access-control may
help reduce the public surface area of the stdlib.
Swift SVN r19353
We haven't been advertising this syntax much, and it's closure form
was completely broken anyway, so don't jump through hoops to provide
great Fix-Its here.
Swift SVN r19277
Keep calm: remember that the standard library has many more public exports
than the average target, and that this contains ALL of them at once.
I also deliberately tried to tag nearly every top-level decl, even if that
was just to explicitly mark things @internal, to make sure I didn't miss
something.
This does export more than we might want to, mostly for protocol conformance
reasons, along with our simple-but-limiting typealias rule. I tried to also
mark things private where possible, but it's really going to be up to the
standard library owners to get this right. This is also only validated
against top-level access control; I haven't fully tested against member-level
access control yet, and none of our semantic restrictions are in place.
Along the way I also noticed bits of stdlib cruft; to keep this patch
understandable, I didn't change any of them.
Swift SVN r19145
In UTF-8 decoder:
- implement U+FFFD insertion according to the recommendation given in the
Unicode spec. This required changing the decoder to become stateful, which
significantly increased complexity due to the need to maintain an internal
buffer.
- reject invalid code unit sequences properly instead of crashing rdar://16767868
- reject overlong sequences rdar://16767911
In stdlib:
- change APIs that assume that UTF decoding can never fail to account for
possibility of errors
- fix a bug in UnicodeScalarView that could cause a crash during backward
iteration if U+8000 is present in the string
- allow noncharacters in UnicodeScalar. They are explicitly allowed in the
definition of "Unicode scalar" in the specification. Disallowing noncharacters
in UnicodeScalar prevents actually using these scalar values as internal
special values during string processing, which is exactly the reason why they
are reserved in the first place.
- fix a crash in String.fromCString() that could happen if it was passed a null
pointer
In Lexer:
- allow noncharacters in string literals. These Unicode scalar values are not
allowed to be exchanged externally, but it is totally reasonable to have them
in literals as long as they don't escape the program. For example, using
U+FFFF as a delimiter and then calling str.split("\uffff") is completely
reasonable.
This is a lot of changes in a single commit; the primary reason why they are
lumped together is the need to change stdlib APIs to account for the
possibility of UTF decoding failure, and this has long-reaching effects
throughout stdlib where these APIs are used.
Swift SVN r19045
conform to LogicValue.
This approach was taken to keep _isNull because I first tried
to just use comparisons to nil instead of isNull(). Apparently
that led to some circular definitions, so it was easier to just
stage it this way.
Swift SVN r18301
It is replaced by debugPrint() family of functions, that are called by REPL.
There is a regression in printing types that don't conform to Printable, this
is tracked by rdar://16898708
Swift SVN r18006