Implement basic code completion support for #selector with property
getters/setters. The vast majority of this implementation comes from
Alex Hoppen (@ahoppen), with only a handful of my own tweaks. Alex has
more interesting ideas on improving this that I wasn't quite ready to
commit to, so this is more basic than the overall goal.
Implements the core functionality of SE-0064 / SR-1239, which
introduces support for accessing the Objective-C selectors of the
getter and setter of an @objc property via #selector(getter:
propertyName) and #selector(setter: propertyName).
Introduce a bunch of QoI around mistakes using #selector to refer to a
property without the "getter:" or "setter:", using Fix-Its to help the
user get it right. There is more to do in this area, still, but we
have an end-to-end feature working.
Much of the implementation and nearly all of the test cases are from
Alex Hoppen (@ahoppen). I've done a bit of refactoring, simplified the
AST representation, and replaced Alex's custom
expression-to-declaration logic with an extension to the constraint
solver. The last bit might be short-lived, based on swift-evolution
PR280, which narrows the syntax of #selector considerably.
While we could bridge 'NSRange' to 'NSRange' and 'NSRange?' to
'NSValue * _Nullable', that (a) would be confusing, and (b) isn't
actually implemented at the moment. Fix my mistake in 477933b to
start accepting these.
A recursive implementation is cleaner, and more cleanly preserves class inheritance and generic specialization through the operation to get the refined protocol conformance. Fixes SR-1323.
Teach isClangTypeMoreIndirectThanSubstType about swift_newtype-ed
typedefs, which may be of CF foreign class type. In these cases, we
should reason about the underlying, wrapped type. Includes
refactoring of common logic and tests.
When attempting to compile Swift 2 code (or any Swift code using the
Swift 2 names) in Swift 3, the compiler diagnostics are often entirely
useless because the names have changed radically enough that one
generally gets "no member named 'foo'" errors rather than a helpful
"'foo' was renamed to 'bar'" error. This makes for a very poor user
experience when (e.g.) trying to move Swift 2 code forward to Swift 3.
To improve the experience, when the Swift 2 and Swift 3 names of an
API differ, the Clang importer will produce a "stub" declaration that
matches the Swift 2 API. That stub will be marked with a synthesized
attribute
@available(unavailable, renamed: "the-swift-3-name")
that enables better diagnostics (e.g., "'foo' is unavailable: renamed
to 'bar') along with Fix-Its (courtesy of @jrose-apple's recent work)
that fix the Swift 2 code to compile in Swift 3.
This change addresses much of rdar://problem/25309323 (concerning QoI
of Swift 2 code compiled with a Swift 3 compiler), but some cleanup
remains.
This particular crasher very rarely didn't crash, causing mayhem with
false failures on the builders.
We were keeping a reference to a vector that could be reallocated in a
recursive call back into the same function. Instead, tend towards
looking up the vector in the map each time we need it.
The conformances for e.g. `Foo<T>` might still be bindable to those for `Foo<Int>`; we can handle this by looking to see if the conformances' root NormalProtocolConformances match instead of their leaf specializations.
- Don't crash if a class_method instruction could not be devirtualized.
- Improve devirtualization of methods with generic parameters and using dependent types.
- Fix a bug in isBindableToSuperclassOf, uncovered while fixing the original bug reported in SR-1206.
This bug could lead in certain cases to invocations of a wrong method from the base class, instead
of using a method from a derived class.
rdar://25891588 and SR-1206
* Implement the majority of parsing support for SE-0039.
* Parse old object literals names using new syntax and provide FixIt.
For example, parse "#Image(imageLiteral:...)" and provide a FixIt to
change it to "#imageLiteral(resourceName:...)". Now we see something like:
test.swift:4:9: error: '#Image' has been renamed to '#imageLiteral
var y = #Image(imageLiteral: "image.jpg")
^~~~~~ ~~~~~~~~~~~~
#imageLiteral resourceName
Handling the old syntax, and providing a FixIt for that, will be handled in a separate
commit.
Needs tests. Will be provided in later commit once full parsing support is done.
* Add back pieces of syntax map for object literals.
* Add parsing support for old object literal syntax.
... and provide fixits to new syntax.
Full tests to come in later commit.
* Improve parsing of invalid object literals with old syntax.
* Do not include bracket in code completion results.
* Remove defunct code in SyntaxModel.
* Add tests for migration fixits.
* Add literals to code completion overload tests.
@akyrtzi told me this should be fine.
* Clean up response tests not to include full paths.
* Further adjust offsets.
* Mark initializer for _ColorLiteralConvertible in UIKit as @nonobjc.
* Put attribute in the correct place.
Even thought raw types are specified in inheritance clauses, their
members are not usable through an enum instance. Thus, there is no
point to synthesize their members.
Previously it was not possible to parse expressions of the form
[Int -> Int]()
because no Expr could represent the '->' token and be converted later
into a FunctionTypeRepr. This commit introduces ArrowExpr which exists
solely to be converted to FunctionTypeRepr later by simplifyTypeExpr.
https://bugs.swift.org/browse/SR-502
When a non-@objc witness matches an @objc requirement except for
@objc-ness, treat it the same way whether it's an optional requirement
or not, except that it's a warning for the optional case. Should
finish off rdar://problem/25159872.
When an optional requirement of an @objc protocol has a selector that
collides with an entity that has a different *Swift* name but produces
an Objective-C method with the same selector, we have an existing
diagnostic complaining about the conflict. In such cases, make a few
suggestions (with Fix-Its) to improve the experience:
* Change Swift name to match the requirement, adding or modifying the
@objc as appropriate.
* Add "@nonobjc" to silence the diagnostic, explicitly opting out of
matching an @objc requirement.
This is intended to help with migration of Swift 2 code into Swift
3. The Swift 2 code will produce selectors that match Objective-C
methods in the protocol from Swift names that don't match; this helps
fix up those Swift names so that we now match.
Fixes the rest of rdar://problem/25159872. In some sense, it's a
stop-gap for more detailed checking of near-misses for optional
requirements, but it's not clear how wide-reaching such changes would
be.
Semantic analysis may match up a witness to a requirement with
renaming; when performing code completion, we still want to see the
requirement because it's possible that the user just hasn't written it
yet. Fixes the regression I caused earlier today.
When an optional requirement of an @objc protocol has a selector that
collides with an entity that has a different *Swift* name but produces
an Objective-C method with the same selector, we have an existing
diagnostic complaining about the conflict. In such cases, make a few
suggestions (with Fix-Its) to improve the experience:
* Change Swift name to match the requirement, adding or modifying the
@objc as appropriate.
* Add "@nonobjc" to silence the diagnostic, explicitly opting out of
matching an @objc requirement.
This is intended to help with migration of Swift 2 code into Swift
3. The Swift 2 code will produce selectors that match Objective-C
methods in the protocol from Swift names that don't match; this helps
fix up those Swift names so that we now match.
Fixes the rest of rdar://problem/25159872. In some sense, it's a
stop-gap for more detailed checking of near-misses for optional
requirements, but it's not clear how wide-reaching such changes would
be.
Though the generic type information isn't present, it isn't necessary if we're just invoking other operations from Objective-C. This should allow an extension to use the generic class's own API to some degree, as it would if defined on the nongeneric form.
as well as on parameter decls. Also, tighten up the type checker to look at
parameter types instead of decl attributes in some cases (exposing a type
checker bug).
Still TODO:
- Reject autoclosure/noescape on non-parameter types.
- Move stdlib and other code to use noescape and autoclosure in the right
spot.
- Warn about autoclosure/noescape on parameters decls, with a fixit to move it.
- Upgrade the warning to an error.
Implements SE-0055: https://github.com/apple/swift-evolution/blob/master/proposals/0055-optional-unsafe-pointers.md
- Add NULL as an extra inhabitant of Builtin.RawPointer (currently
hardcoded to 0 rather than being target-dependent).
- Import non-object pointers as Optional/IUO when nullable/null_unspecified
(like everything else).
- Change the type checker's *-to-pointer conversions to handle a layer of
optional.
- Use 'AutoreleasingUnsafeMutablePointer<NSError?>?' as the type of error
parameters exported to Objective-C.
- Drop NilLiteralConvertible conformance for all pointer types.
- Update the standard library and then all the tests.
I've decided to leave this commit only updating existing tests; any new
tests will come in the following commits. (That may mean some additional
implementation work to follow.)
The other major piece that's missing here is migration. I'm hoping we get
a lot of that with Swift 1.1's work for optional object references, but
I still need to investigate.
- Extract the cache entry type to a top-level type that can be used in the
signature of the function.
- Rewrite the implementation of the type in terms of standard LLVM ADTs
instead of manual bit manipulation.
- Add support for trivial-with-optional types (none of which exist yet).
- Drop the use of SIL/BridgedTypes.def; the only non-trivial non-object
bridged type today is 'Bool' (for ObjCBool and DarwinBoolean) and that's
already trivially bridged to CBool too.
- Save an Identifier lookup when possible.
- Finally, rename the function to getForeignRepresentationInfo.
No intended functionality change.
Under parameter doc comment list items, allow function doc comment
syntax to nest so you can document the meaning of closure parameters'
signatures.
rdar://problem/24794725