warning: control may reach end of non-void function [-Wreturn-type]
Add a llvm_unreachable to indicate that the function will always return or fail
more obviously rather than returning a garbage value.
It's like LLVM's MergeFunctions pass, except that it can also merge functions which differ by some constants.
The intention is to merge specialized functions which only differ by metadata lookups. But it can also merge other types of functions.
It gives ~7% code size reducation for the stdlib.
There are still some open TODOs, e.g. to share common code with LLVM's MergeFunctions pass (currently much code is just copied).
This protocol lets us identify swift_newtype'd types. More
importantly, use protocol extensions to make it easy to transfer
specific conformances from the underlying type to the wrapper
type. So, for example, if the underlying type is Hashable, make the
wrapper type Hashable as well. Do the same for Equatable, Comparable,
and _ObjectiveCBridgeable. Fixes rdar://problem/26010804.
Getting metadata from a metatype source just means loading from an offset;
with a reference source we have to dereference the isa pointer first.
Thanks to @bitjammer for pointing out this was broken.
- Fix caller/callee confusion, and use the right SIL function type
for obtaining the generic signature.
- Correctly interpret the NecessaryBindings structure and the
substitutions therein.
- Fix alignment for capture and builtin type descriptors
- Put capture descriptor typerefs in the correct section
Add new SIL-level tests to precisely trigger various scenarios.
If NSInteger and NSUInteger typedefs are available in the current Clang context, use them when mapping Swift's Int and UInt to Clang types. This gives us consistent method and property type encodings for @objc methods with Clang, fixing rdar://problem/17506068.
The ObjC runtime on OS X 10.10 and older and iOS 9 and older can't
handle them, so for these targets, emit nil for all class property
lists.
It's a little unfortunate that this is target-dependent, but there's
not much we can do about it.
rdar://problem/25605427
Rather than collection nominal type and extension decls and emit
reflection metadata records in one go, we can emit them as they
are encountered and instead collection builtin types referenced
by those at the end.
specialization to be separately lowered in IRGen, use the mangling
of the specialized type as the name of the llvm::StructType instead
of the base, unspecialized type.
This tends to produce fewer collisions between IR type names.
LLVM does unique the names on its own, so that's not strictly
necessary, but it's still a good idea because it makes the test
output more reliable and somewhat easier to read (modulo the
impact of bigger type names). Collisions will still occur if
the type is specialized at an archetype, since in this case we
will fall back on the unspecialized type.
properties of classes with generic layouts.
Previously we were falling back on accessing them via the field
offset vector even when we knew everything about the type.
As a minor benefit, this allows RemoteAST to also determine offsets
for members of classes with generic layout.
Half of the test changes are IR type-name uniquing; I'm going to
explore mangling these with the full type where possible.
If there are any builtin types referenced by closure captures
[in the standard library], make sure to collect them so we emit
reflection metadata for them in the builtin section.
For now, just enough for lowering.
Perhaps we should have a way to always just get this information
from metadata instead, since protocol metadata is always static
and not instantiated.
This would require the static "object file" interface used by
swift-reflection-dump to take a callback for symbol lookup.
These types are not directly referenced as fields of aggregate types,
but are needed for reflection type lowering.
Also, use a SetVector to collect referenced builtin types, instead of
a SmallPtrSet, to ensure compiler output is deterministic.
MCJIT doesn't like offset relocations into the data sections, so the
capture descriptors and their typerefs/metadata source encoded strings
will need to be emitted as globals and not go into the reflection data
sections.
For convenience when reading looking at heap closure metadata.
Also move the capture typerefs above the metadata sources, since
they're more likely to be accessed than generic metadata sources.
Now we can discern the types of values in heap boxes at runtime!
Closure reference captures are a common way of creating reference
cycles, so this provides some basic infrastructure for detecting those
someday.
A closure capture descriptor has the following:
- The number of captures.
- The number of sources of metadata reachable from the closure.
This is important for substituting generics at runtime since we
can't know precisely what will get captured until we observe a
closure.
- The number of types in the NecessaryBindings structure.
This is a holding tank in a closure for sources of metadata that
can't be gotten from the captured values themselves.
- The metadata source map, a list of pairs, for each
source of metadata for every generic argument needed to perform
substitution at runtime.
Key: The typeref for the generic parameter visible from the closure
in the Swift source.
Value: The metadata source, which describes how to crawl the heap from
the closure to get to the metadata for that generic argument.
- A list of typerefs for the captured values themselves.
Follow-up: IRGen tests for various capture scenarios, which will include
MetadataSource encoding tests.
rdar://problem/24989531
Create a builder divorced from the ReflectionContext so that
MetadataSources can be created in other contexts, such as emitting
private heap metadata during IRGen, where we'll have to record the
layout of captures and how to get metadata for generic arguments in
order to construct typerefs of the captures, etc.
Add Parent, Metadata capture, and Impossible metadata sources.
In order to perform layout, the remote mirrors library needs to know
about the size, alignment and extra inhabitants of builtin types.
Ideally we would emit a reflection info section in libswiftRuntime.o,
but in the meantime just duplicate builtin type metadata for all
builtin types referenced from the current module instead.
In practice only the stdlib and a handful of overlays like the SIMD
overlay use builtin types, and only a few at a time.
Tested manually by running swift-reflection-tool on the standard
library -- I'll add automated tests by using -parse-stdlib to
reference Builtin types in a subsequent patch that adds more layout
logic.
NFC if -enable-reflection-metadata is off.
Otherwise, we will insert padding if the field metadata section size
is not a multiple of the word size, which will cause a crash when
we later try to read it.
Implements SE-0055: https://github.com/apple/swift-evolution/blob/master/proposals/0055-optional-unsafe-pointers.md
- Add NULL as an extra inhabitant of Builtin.RawPointer (currently
hardcoded to 0 rather than being target-dependent).
- Import non-object pointers as Optional/IUO when nullable/null_unspecified
(like everything else).
- Change the type checker's *-to-pointer conversions to handle a layer of
optional.
- Use 'AutoreleasingUnsafeMutablePointer<NSError?>?' as the type of error
parameters exported to Objective-C.
- Drop NilLiteralConvertible conformance for all pointer types.
- Update the standard library and then all the tests.
I've decided to leave this commit only updating existing tests; any new
tests will come in the following commits. (That may mean some additional
implementation work to follow.)
The other major piece that's missing here is migration. I'm hoping we get
a lot of that with Swift 1.1's work for optional object references, but
I still need to investigate.