Double-underscored names are reserved for the C++ "implementation"
(language and standard library). Even though "__Consuming" isn't
likely to be part of the C++ standard any time soon, we should follow
the rules.
Note that the API digester will continue to use the string
"__Consuming" for now, even though the underscores aren't really
significant, to avoid invalidating existing dumps.
No functionality change.
The only place this was used in Decl.h was the failability kind of a
constructor.
I decided to replace this with a boolean isFailable() bit. Now that
we have isImplicitlyUnwrappedOptional(), it seems to make more sense
to not have ConstructorDecl represent redundant information which
might not be internally consistent.
Most callers of getFailability() actually only care if the result is
failable or not; the few callers that care about it being IUO can
check isImplicitlyUnwrappedOptional() as well.
Since the return value of getAccessor() depends on mutable state, it
does not make sense in the request evaluator world. Let's begin by
removing some utility methods derived from getAccessor(), replacing
calls to them with calls to getAccessor().
Implicit accessors are sometimes transparent for performance reasons.
Previously this was done in Sema by maybeMarkTransparent(), which would
add a TransparentAttr. Replace this with a request.
Once accessors are no longer listed as members of their parent context,
a failure to deserialize a VarDecl or SubscriptDecl needs to create a
MissingMemberDecl with the total number of vtable entries expected for
all of the accessors of the storage.
Note that until the accessor change actually lands, we always compute
the expected number of vtable entries as 0.
These are two slightly different operations. Make them share code and
prepare them for when we stop adding accessors to their parent
DeclContext.
Note the FIXMEs; this code could use additional attention.
Fixes rdar://problem/53407949 | SR-11138. Previously, we'd only look at the outermost property wrapper to decide whether the wrapped property's getter and setter were `mutating` (or exist at all). In reality, this requires considering the semantics of the composed accesses of each wrapper layer's
`wrappedValue` property. Fixing this systematically addresses a number of issues:
- As SR-11138 reported, composing a nonmutating-get-set wrapper ought to produce a composed wrapper
that's nonmutating.
- We would previously allow a property wrapper with a mutating getter to be nested inside one with
only a getter, even though the resulting implementation was unsound (because there's no mutable
context for the inner wrapper to execute its get on.)
- Similarly, we would construct unsound setters in cases where the setter can't exist, such as when
the nested wrapper isn't settable but the outer wrapper is.
This just moves the code from the parser into a request. Sema will
still overwrite the ImplInfo field for lazy properties and
property wrappers; refactoring that is next.
Previously we would copy this attribute from a superclass to the
subclass when validating a subclass. However, this is only correct
if the superclass is always guaranteed to have been validated
before the subclass.
Indeed, it appears this assumption is no longer true, so we would
sometimes lose track of the attribute, which would result in SILGen
failing to emit the ivar initializer entry point.
Instead, check for the attribute as part of the superclass walk
in checkAncestry(), ensuring the result is always up to date, correct,
and cached.
As a follow-up, we should also convert checkAncestry() into a
request, but I'm not doing that here to keep the fix short.
Fixes <rdar://problem/50845438>.
We want to compute the former independently of the latter.
It's only 16 bits so storing it inside the Decl is fine;
it also allows us to eliminate the 'compact' representation
where an AbstractStorageDecl without an accessor record is
assumed to be stored.
Add the request `ExistentialConformsToSelfRequest` to lazily determine
if an existential conforming to a protocol can be matched with a
generic type parameter constrained to that protocol.
Add the request `ProtocolRequiresClassRequest` to lazily determine if a
`ProtocolDecl` requires conforming types to be a class.
Note that using the request evaluator to compute `requiresClass` introduces
cycle errors for protocol declarations, where this computation didn't
previously emit diagnostics. For now, we'll allow duplicate diagnostics in this
case, with the eventual goal of removing explicitly checking for cycles
via `checkCircularity` (instead letting the request evaluator handle cycle
diagnostics).