Most ApplyExpr subclasses will now require a ParenExpr, TupleExpr, or TupleShuffleExpr around their argument lists. The exceptions are BinaryExpr, which requires a TupleExpr, and SelfApplyExpr and its subclasses, which allow anything (and only ever have one argument).
This change doesn’t fix any of the places where we actually generate these.
The storage kind has been replaced with three separate "impl kinds",
one for each of the basic access kinds (read, write, and read/write).
This makes it far easier to mix-and-match implementations of different
accessors, as well as subtleties like implementing both a setter
and an independent read/write operation.
AccessStrategy has become a bit more explicit about how exactly the
access should be implemented. For example, the accessor-based kinds
now carry the exact accessor intended to be used. Also, I've shifted
responsibilities slightly between AccessStrategy and AccessSemantics
so that AccessSemantics::Ordinary can be used except in the sorts of
semantic-bypasses that accessor synthesis wants. This requires
knowing the correct DC of the access when computing the access strategy;
the upshot is that SILGenFunction now needs a DC.
Accessor synthesis has been reworked so that only the declarations are
built immediately; body synthesis can be safely delayed out of the main
decl-checking path. This caused a large number of ramifications,
especially for lazy properties, and greatly inflated the size of this
patch. That is... really regrettable. The impetus for changing this
was necessity: I needed to rework accessor synthesis to end its reliance
on distinctions like Stored vs. StoredWithTrivialAccessors, and those
fixes were exposing serious re-entrancy problems, and fixing that... well.
Breaking the fixes apart at this point would be a serious endeavor.
Several different places in the codebase synthesize IntegerLiteralExprs from computed unsigned variables; each one requires several lines of code and does things slightly differently. Write one central helper method to handle this.
Instead, generate the type variable in ConstraintGenerator.
However, we only want to generate it if we're type checking
from inside TypeChecker::typeCheckCompletionSequence(), so
add an isActivated() flag to CodeCompletionExpr. If it is
not set, constraint generation will simply fail on an
expression containing a CodeCompletionExpr.
Factor out the code to lower an individual key path component to be independent of overall KeyPathExpr lowering, so that we can soon reuse the same code paths to build property descriptors for resilient properties. NFC intended.
Add dumpers to dump from the constraint system type cache.
There isn't a TypeLoc dumper per-se, but the places where we dump
TypeLocs in expression dumping will read the type from the cache.
Stop creating ImplicitlyUnwrappedOptional<T> so that we can remove it
from the type system.
Enable the code that generates disjunctions for Optional<T> and
rewrites expressions based on the original declared type being 'T!'.
Most of the changes supporting this were previously merged to master,
but some things were difficult to merge to master without actually
removing IUOs from the type system:
- Dynamic member lookup and dynamic subscripting
- Changes to ensure the bridging peephole still works
Past commits have attempted to retain as much fidelity with how we
were printing things as possible. There are some cases where we still
are not printing things the same way:
- In diagnostics we will print '?' rather than '!'
- Some SourceKit and Code Completion output where we print a Type
rather than Decl.
Things like module printing via swift-ide-test attempt to print '!'
any place that we now have Optional types that were declared as IUOs.
There are some diagnostics regressions related to the fact that we can
no longer "look through" IUOs. For the same reason some output and
functionality changes in Code Completion. I have an idea of how we can
restore these, and have opened a bug to investigate doing so.
There are some small source compatibility breaks that result from
this change:
- Results of dynamic lookup that are themselves declared IUO can in
rare circumstances be inferred differently. This shows up in
test/ClangImporter/objc_parse.swift, where we have
var optStr = obj.nsstringProperty
Rather than inferring optStr to be 'String!?', we now infer this to
be 'String??', which is in line with the expectations of SE-0054.
The fact that we were only inferring the outermost IUO to be an
Optional in Swift 4 was a result of the incomplete implementation of
SE-0054 as opposed to a particular design. This should rarely cause
problems since in the common-case of actually using the property rather
than just assigning it to a value with inferred type, we will behave
the same way.
- Overloading functions with inout parameters strictly by a difference
in optionality (i.e. Optional<T> vs. ImplicitlyUnwrappedOptional<T>)
will result in an error rather than the diagnostic that was added
in Swift 4.1.
- Any place where '!' was being used where it wasn't supposed to be
allowed by SE-0054 will now treat the '!' as if it were '?'.
Swift 4.1 generates warnings for these saying that putting '!'
in that location is deprecated. These locations include for example
typealiases or any place where '!' is nested in another type like
`Int!?` or `[Int!]`.
This commit effectively means ImplicitlyUnwrappedOptional<T> is no
longer part of the type system, although I haven't actually removed
all of the code dealing with it yet.
ImplicitlyUnwrappedOptional<T> is is dead, long live implicitly
unwrapped Optional<T>!
Resolves rdar://problem/33272674.
DeclContexts as they exist today are "over aligned" when compared to
their natural alignment boundary and therefore they can easily cause
adjacent padding when dropped into the middle of objects via C++
inheritance, or when the clang importer prefaces Swift AST allocations
with a pointer to the corresponding clang AST node.
With this change, we move DeclContexts to the front of the memory layout
of AST nodes. This allows us to restore natural alignment, save memory,
and as a side effect: more easily avoid "over alignment" in the future
because DeclContexts now only need to directly track which AST node
hierarchy they're associated with, not specific AST nodes within each
hierarchy.
Finally, as a word of caution, after this change one can no longer
assume that AST nodes safely convert back and forth with "void*". For
example, WitnessTableEntry needed fixing with this change.
This expression node is only used when applying the results of
expression type checking. It initially appears above the function
reference that returns an optional that needs to be unwrapped, and
then when dealing with function application we remove this and insert
a node to force-unwrap the result of the function application.
1) Remove SWIFT_INLINE_BITS boilerplate. Now that we're not using anonymous/transparent unions, we don't need the
SWIFT_BITFIELD_BITS macro.
2) Refine the the bitfield size check to better support templated bitfields.
3) Refine the SIL templated bitfields to not be prematurely "full".
Also, give each class hierarchy at least 8 bits for the 'Kind' field.
In practice, no class hierarchy has more than 256 nodes, so this
optimizees code generation to make isa/dyn_cast faster.
Inline bitfields are a common design pattern in LLVM and derived
projects, but the associated boilerplate can be demotivating and
brittle. This new header makes it easier to define and use inline
bitfields in Swift.
This also reorders some fields for better code generation.
Integer and Floating literals are aware of their negation but
do not store the sign in the text of the value. Retrieve the
sign bit and properly interpolate the text of the literal value
with it to distinguish negative and positive literals.
just for pointer identity.
The current technique for deciding whether that's the case is *extremely*
hacky and need to be replaced with an attribute, but I'm reluctant to
take that on so late in the schedule. The hack is terrible but not too
hard to back out in the future. Anyone who names a method like this just
to get the magic behavior knows well that they are not on the side of
righteousness.
rdar://33265254
To remove some callers of 'is<InOutType>' after Sema, start using what will soon be a structural invariant - the only expressions that can possibly have 'inout' type are semantically InOut expressions.
ground work for the syntactic bridging peephole.
- Pass source and dest formal types to the bridging routines in addition
to the dest lowered type. The dest lowered type is still necessary
in order to handle non-standard abstraction patterns for the dest type.
- Change bridging abstraction patterns to store bridged formal types
instead of the formal type.
- Improve how SIL type lowering deals with import-as-member patterns.
- Fix some AST bugs where inadequate information was being stored in
various expressions.
- Introduce the idea of a converting SGFContext and use it to regularize
the existing id-as-Any conversion peephole.
- Improve various places in SILGen to emit directly into contexts.