Tests seem to pass without these.
Two calls still remain, in ModuleDecl::addFiles() and removeFiles().
It will take a bit more refactoring to eliminate those.
- Add DocRangesLayout to the `.swiftsourceinfo`.
This is a blob containing an array of `SingleRawComment`
source locations.
- Add DocLocWriter for serializing `SingleRawComment` locs into the
`DocLocsLayout` buffer.
Serialize start line, start column, and length of `SingleRawComment`
pieces in `.swiftsourceinfo`
- Read doc locs when loading basic declaration locs from a ModuleFile.
- Load `DOC_LOCS` blob into ModuleFile::DocLocsData
- Reconstitute RawComment ranges when available from .swiftsourceinfo
- Allow requesting serialized raw comment if available
rdar://problem/58339492
Identify problems like:
```swift
func foo(_ x: Int, _ y: String) {}
func bar(a: Int, b: String) {
foo(b, a) // Instead of `foo(a, b)`
}
```
Where arguments are out-of-order and repair it by using OoO fix on the
parent locator.
Regardless of any flags, the stdlib will have its generic metadata
prespecialized.
Temporarily reintroduced the flag to enable the feature flag while
preserving the flag to disable it and changed the default back to off
for the moment.
Add ExecuteSILPipelineRequest which executes a
pipeline plan on a given SIL (and possibly IRGen)
module. This serves as a top-level request for
the SILOptimizer that we'll be able to hang
dependencies off.
Rather than registering individual IRGen passes
when we want to execute them, store function
pointers to all the pass constructors on the
ASTContext. This will make it easier to requestify
the execution of pass pipelines.
The `differentiability_witness_function` instruction looks up a
differentiability witness function (JVP, VJP, or transpose) for a referenced
function via SIL differentiability witnesses.
Add round-trip parsing/serialization and IRGen tests.
Notes:
- Differentiability witnesses for linear functions require more support.
`differentiability_witness_function [transpose]` instructions do not yet
have IRGen.
- Nothing currently generates `differentiability_witness_function` instructions.
The differentiation transform does, but it hasn't been upstreamed yet.
Resolves TF-1141.
It's done by first retrieving all generic parameters from each solution,
filtering boundings into distrinct set and diagnosing any differences.
For example:
```swift
func foo<T>(_: T, _: T) {}
func bar(x: Int, y: Float) {
foo(x, y)
}
```
Static-linked libraries could add symbols to the final tbd file. We need
this flag to specify additional module names to collect symbols from.
rdar://59399684
This will be used for compiler-driven type erasure for dynamic
replacement of functions with an opaque return type. For now, just
parse the attribute and ignore it.
Add `SILFunctionType::getAutoDiffTransposeFunctionType`.
It computes the transpose `SILFucntionType` for an original `SILFunctionType`,
given:
- Linearity parameter indices
- Transpose function generic signature (optional)
- Other auxiliary parameters
Add doc comments explaining typing rules, preconditions, and other details.
Add `isTranspose` flag to `autodiff::getConstrainedDerivativeGenericSignature`.
Partially resolves TF-1125.
Unblocks TF-1141: upstream `differentiability_witness_function` instruction.
* [CSDiagnostics] Offer a fix-it to insert a return type when returning from a void function
* [CSDiagnostics] Make sure the function name is not empty
The function name will be empty in some cases, for example for property setters. In cases where the function name is empty, skip the note and fix-it.
* [Test] Update existing diagnostics
calls over arrays created from array literals. This enables optimizing
further the output of the OSLogOptimization pass, and results in
highly-compact and optimized IR for calls to the new os log API.
<rdar://58928427>
SIL differentiability witnesses are a new top-level SIL construct mapping
an "original" SIL function and derivative configuration to derivative SIL
functions.
This patch adds `SILDifferentiabilityWitness` IRGen.
`SILDifferentiabilityWitness` has a fixed `{ i8*, i8* }` layout:
JVP and VJP derivative function pointers.
Resolves TF-1146.
(BaseT, @inout @unowned(unsafe) T) -> @guaranteed T
The reason for the weird signature is that currently the Builtin infrastructure
does not handle results well. Also, note that we are not actually performing a
call here. We are SILGening directly so we can create a guaranteed result.
The intended semantics is that one passes in a base value that guarantees the
lifetime of the unowned(unsafe) value. The builtin then:
1. Borrows the base.
2. Loads the trivial unowned (unsafe), converts that value to a guaranteed ref
after unsafely unwrapping the optional.
3. Uses mark dependence to tie the lifetimes of the guaranteed base to the
guaranteed ref.
I also updated my small UnsafeValue.swift test to make sure we get the codegen
we expect.
The signature is:
(T, @inout @unowned(unsafe) Optional<T>) -> ()
The reason for the weird signature is that currently the Builtin infrastructure
does not handle results well.
The semantics of this builtin is that it enables one to store the first argument
into an unowned unsafe address without any reference counting operations. It
does this just by SILGening the relevant code. The optimizer chews through this
code well, so we get the expected behavior.
I also included a small proof of concept to validate that this builtin works as
expected.