By convention, most structs and classes in the Swift compiler include a `dump()` method which prints debugging information. This method is meant to be called only from the debugger, but this means they’re often unused and may be eliminated from optimized binaries. On the other hand, some parts of the compiler call `dump()` methods directly despite them being intended as a pure debugging aid. clang supports attributes which can be used to avoid these problems, but they’re used very inconsistently across the compiler.
This commit adds `SWIFT_DEBUG_DUMP` and `SWIFT_DEBUG_DUMPER(<name>(<params>))` macros to declare `dump()` methods with the appropriate set of attributes and adopts this macro throughout the frontend. It does not pervasively adopt this macro in SILGen, SILOptimizer, or IRGen; these components use `dump()` methods in a different way where they’re frequently called from debugging code. Nor does it adopt it in runtime components like swiftRuntime and swiftReflection, because I’m a bit worried about size.
Despite the large number of files and lines affected, this change is NFC.
This addresses comments from Joe to document the special behaviour that
we do in the `addSubsitution` functions which cause a subtle failure on
Windows.
The order of evaluation of the subscript operator would increase the
count of map, resulting in the decoration to be off by one. This
enables building the swift standard library on Windows again.
This check doesn't make sense anymore because we are still making changes to the old remangler, but not to the old demangler.
Also, this check didn't work in most cases anyway.
rdar://problem/37241935
Previously it was part of swiftBasic.
The demangler library does not depend on llvm (except some header-only utilities like StringRef). Putting it into its own library makes sure that no llvm stuff will be linked into clients which use the demangler library.
This change also contains other refactoring, like moving demangler code into different files. This makes it easier to remove the old demangler from the runtime library when we switch to the new symbol mangling.
Also in this commit: remove some unused API functions from the demangler Context.
fixes rdar://problem/30503344
Instead of appending a character for each substitution, we now prefix the substitution with the repeat count, e.g.
AbbbbB -> A5B
The same is done for known-type substitutions, e.g.
SiSiSi -> S3i
This significantly shrinks mangled names which contain large lists of the same type, like
func foo(_ x: (Int, Int, Int, Int, Int, Int, Int, Int, Int, Int, Int, Int))
rdar://problem/30707433
Only those types can be de-mangled by the ObjC runtime anyway.
Also move this mangling logic into the ASTMangler class. This avoids keeping the old mangler around just for that purpose.
Following classes provide symbol mangling for specific purposes:
*) Mangler: the base mangler class, just providing some basic utilities
*) ASTMangler: for mangling AST declarations
*) SpecializationMangler: to be used in the optimizer for mangling specialized function names
*) IRGenMangler: mangling all kind of symbols in IRGen
All those classes are not used yet, so it’s basically a NFC.
Another change is that some demangler node types are added (either because they were missing or the new demangler needs them).
Those new nodes also need to be handled in the old demangler, but this should also be a NFC as those nodes are not created by the old demangler.
My plan is to keep the old and new mangling implementation in parallel for some time. After that we can remove the old mangler.
Currently the new implementation is scoped in the NewMangling namespace. This namespace should be renamed after the old mangler is removed.