Use the KeyPath implementation's new support for instantiating and dealing with captures to lower the generic context required to dispatch computed accessors with dependent generics.
Rather than pretend that the requirement signature of a protocol is a
full, well-formed generic signature that one can meaningfully query,
treat it as a flat set of requirements. Nearly all clients already did
this, but make it official. NFC
Also, add a third [serializable] state for functions whose bodies we
*can* serialize, but only do so if they're referenced from another
serialized function.
This will be used for bodies synthesized for imported definitions,
such as init(rawValue:), etc, and various thunks, but for now this
change is NFC.
Hoist alloc_stack instructions of 'generic' or resilient type to the entry
block. At the same time also perform a very simple stack coloring analysis.
This does not use a true liveness-analysis yet but rather employs some simple
conservative checks to see whether the live ranges of two alloc_stacks might
interfere.
AllocStackHoisting is an IRGen SIL pass. This allows for using IRGen's type
lowering information. Furthermore, hoisting and merging the alloc_stack
instructions this late does not interfere with SIL optimizations because the
resulting SIL never gets serialized.
This pipeline is run as part of IRGen and has access to the IRGenModule.
Passes that run as part of this pipeline can query for the IRGenModule.
We will use it for the AllocStackHoisting pass. It wants to know if a type is of
non-fixed size.
To break the cyclic dependency between IRGen -> SILOptimizer -> IRGen that would
arise from the SILPassManager having to know about the createIRGENPASS()
function IRGen passes instead of exposing this function dynamically have to add
themselves to the pass manager.
This is useful in -i and REPL modes, which do not have a separate linking
step. This version of the -l flag doesn't rely on TranslationUnit. I also
cleaned up the library-loading diagnostics.
Swift SVN r9488
-disable-llvm-optzns in clang tells the frontend to do everything it would
normally do at lets say -O2, except run the actual LLVM IR passes on the
resulting IR. This is useful in the case where one wants to look at the result
of a non gauranteed SIL optimization pass at the IR level without llvm
optimizations applied.
Swift SVN r8594
and lexical scopes, which can be enabled through the new -g option.
When -g is enabled, line tables and scopes compile all the way
down to DWARF.
Changes to SIL:
- In addition to a SILLocation, every instruction now also has a pointer
to a SILDebugScope (its containing lexical scope).
- Added LexicalScope, which is to be used for all Scopes we want to show
up in the debug info.
Swift SVN r5772
When generating IR for the JIT, use sel_registerName() to unique the
selector references we generate. Static code doesn't need this
pessimization. Fixes <rdar://problem/12764732>.
Swift SVN r3403