The approach here is to split this into two cases:
- If all case payloads have a fixed size, spare bits may be
potentially used to differentiate between cases, and the
remote reflection library does not have enough information to
compute the layout itself.
However, the total size must be fixed, so IRGen just emits a
builtin type descriptor (which I need to rename to 'fixed type
descriptor' since these are also used for imported value types,
and now, certain enums).
- If at least one case has a size that depends on a generic
parameter or is a resilient type, IRGen does not know the size,
but this means fancy tricks with spare bits cannot be used either.
The remote reflection library uses the same approach as the
runtime, basically taking the maximum of the payload size and
alignment, and adding a tag byte.
As with single-payload enums, we produce a new kind of
RecordTypeInfo, this time with a field for every enum case.
All cases start at offset zero (but of course this might change,
if for example we put the enum tag before the address point).
Also, just as with single-payload enums, there is no remote
'project case index' operation on ReflectionContext yet.
So the the main benefit from this change is that we don't entirely
give up when doing layout of class instances containing enums;
however, tools still cannot look inside the enum values themselves,
except in the simplest cases involving optionals.
Notably, the remote reflection library finally understands all
of the standard library's collection types -- Array, Character,
Dictionary, Set, and String.
Attempt to lay out single-payload enums, using knowledge of extra
inhabitants where possible.
- The extra inhabitants of an aggregate are the extra inhabitants of
the first field. If the first field is empty, there are no extra
inhabitants, and subsequent fields do not affect anything.
- Function pointers and metatypes have different extra inhabitants
than Builtin.RawPointer, so have IRGen emit distinct builtin type
descriptors for those.
- Opaque existentials do not have extra inhabitants.
- Weak references do not have extra inhabitants.
Also, fix IRGen to emit more accurate enum reflection metadata in
these two cases:
- We now record whether enum cases are indirect or not. An indirect
case is the same as a payload case with Builtin.NativeObject.
- We now record whether a case is empty or not using the same logic
as the rest of IRGen. Previously, we would incorrectly emit a
payload type for a case with a payload that is an empty struct,
for example.
At this point we don't have a way to get the currently inhabited
enum case from a value. However, this is still an improvement because
we can still reflect other fields of aggregates containing enums,
instead of just giving up.
Finally make some methods on TypeCoverter private, and use 'friend'
to allow them to be accessed from other internal classes, making the
public API simpler.
Previously we would emit both a builtin descriptor and field
descriptor for imported classes, but we only need the latter.
Untangle some code and fix a crash with imported Objective-C
generics in the process.
Fixes <rdar://problem/26498484>.
Part 1: Generic SIL Boxes always have instatiated metadata with kind
HeapGenericLocalVariable, which includes a metadata pointer for the
boxed type.
Part 2, after this, is to provide some kind of outgoing pointer map for
fixed heap boxes, whose metadata may be shared among different but
destructor-compatible types.
rdar://problem/26240419
Without this, offsets of captures in closure contexts may be
incorrect if there is a non-empty necessary bindings structure
at the front.
rdar://problem/26312900
- Lower Objective-C class typerefs as strong references with unknown
reference counting.
- Lower other imported C types as builtin blobs of their known
size, alignment, etc.
In the future, it might be beneficial to track which stored properties
of imported types are pointers, for better conservative scanning of
outgoing pointers to the heap.
rdar://problem/26240258
rdar://problem/26240394
Also add end-to-end tests for this finally, and fix a bug in
the SwiftReflectionTest library where we would give up on an
module completely if it did not have a field metadata section.
This is of course wrong if the module defines closures but
not nominal types.
This adds various MetadataReader methods to support closure layout:
- Reading generic arguments from metadata
- Reading parent metadata
- Reading capture descriptor from heap metadata
To a large extent, this is not currently taken advantage of, because
SILGen always wraps address-only captures in SIL box types.
Tests are in the next patch.
Remote metadata for closure contexts points to a capture descriptor.
We have a local copy of all capture descriptors. Translate the
address by recording the local and remote start address of
reflection metadata.
When deriving substitutions from closure contexts, we end up with
a problem where we have an original type and a substituted type,
and the original type is not necessarily a type parameter.
We need to decompose the original and substituted types to derive
the substitutions that produced the substitution.
For example, deriveSubstitutions(Foo<T -> Int>, Foo<String -> Int>)
will give us a substitution of T := Int.
It's more accurate to use the offset of the "metadata field" of the
existential's RecordTypeInfo when projecting an existential
during remote reflection.
Implement the ReflectionContext's implementation of:
swift_reflection_projectExistential.
First, we get the type info of the existential typeref - it should be a
record type info. If it's a class existential, it has trivial layout:
the first word is a pointer to the class instance. Otherwise, if the
value fits in the 3-word buffer of the existential container, it
trivially is also at the start of the container. Otherwise, the value is
off in a heap box somewhere, but the first word of the container is a
pointer to that box.
Closure context layout will depend on the instance itself as well
as the isa pointer, because instead of instantiating metadata for
closures that capture generic parameters, we store the substitutions
inside the context itself.
For classes, this entry point just reads the isa pointer, applies
the isa mask and proceeds down the metadata path.
For now, the only the latter is hooked up.
Also, use the instance layout entry point in swift-reflection-test,
so that we can dump the layout of a class instance and not the
lowering of the reference value.
- Improper handling of read() returning an incomplete read
- Update SwiftReflectionTest library for new builtin types section
Only tested manually so far; automated tests coming soon.
along with the boilerplate macro. This allows one to create TypeRefs
with either the builder or via the static methods, so long as a builder
argument is supplied so uniquing caches can be checked.
rdar://problem/25924875
We'd like to be able to compare TypeRefs with pointer equality,
but we can't link LLVMSupport, so make a lightweight TypeRefID
like FoldingSetID, that only supports the input types necessary
to unique TypeRefs.
rdar://problem/25924875