Still no implementation yet; we'll need to renovate how boxes work a bit to make them projectable (and renovate SILGen to generate typed boxes for the insn to be useful).
Swift SVN r29490
This reverts commit r29475 because it conflicts with reverting r29474,
and it looks like that commit is breaking the build of the SpriteKit
overlay.
Swift SVN r29481
Still no implementation yet; we'll need to renovate how boxes work a bit to make them projectable (and renovate SILGen to generate typed boxes for the insn to be useful).
Swift SVN r29475
Preparation to fix <rdar://problem/18151694> Add Builtin.checkUnique
to avoid lost Array copies.
This adds the following new builtins:
isUnique : <T> (inout T[?]) -> Int1
isUniqueOrPinned : <T> (inout T[?]) -> Int1
These builtins take an inout object reference and return a
boolean. Passing the reference inout forces the optimizer to preserve
a retain distinct from what’s required to maintain lifetime for any of
the reference's source-level copies, because the called function is
allowed to replace the reference, thereby releasing the referent.
Before this change, the API entry points for uniqueness checking
already took an inout reference. However, after full inlining, it was
possible for two source-level variables that reference the same object
to appear to be the same variable from the optimizer's perspective
because an address to the variable was longer taken at the point of
checking uniqueness. Consequently the optimizer could remove
"redundant" copies which were actually needed to implement
copy-on-write semantics. With a builtin, the variable whose reference
is being checked for uniqueness appears mutable at the level of an
individual SIL instruction.
The kind of reference count checking that Builtin.isUnique performs
depends on the argument type:
- Native object types are directly checked by reading the
strong reference count:
(Builtin.NativeObject, known native class reference)
- Objective-C object types require an additional check that the
dynamic object type uses native swift reference counting:
(Builtin.UnknownObject, unknown class reference, class existential)
- Bridged object types allow the dymanic object type check to be
bypassed based on the pointer encoding:
(Builtin.BridgeObject)
Any of the above types may also be wrapped in an optional. If the
static argument type is optional, then a null check is also performed.
Thus, isUnique only returns true for non-null, native swift object
references with a strong reference count of one.
isUniqueOrPinned has the same semantics as isUnique except that it
also returns true if the object is marked pinned regardless of the
reference count. This allows for simultaneous non-structural
modification of multiple subobjects.
In some cases, the standard library can dynamically determine that it
has a native reference even though the static type is a bridge or
unknown object. Unsafe variants of the builtin are available to allow
the additional pointer bit mask and dynamic class lookup to be
bypassed in these cases:
isUnique_native : <T> (inout T[?]) -> Int1
isUniqueOrPinned_native : <T> (inout T[?]) -> Int1
These builtins perform an implicit cast to NativeObject before
checking uniqueness. There’s no way at SIL level to cast the address
of a reference, so we need to encapsulate this operation as part of
the builtin.
Swift SVN r27887
reference to something of class type. This is required to model
RebindSelfInConstructorExpr correctly to DI, since in the class case,
self.init and super.init *take* a value out of class box so that it
can pass the +1 value without performing an extra retain. Nothing
else in the compiler uninitializes a DI-controlled memory object
like this, so nothing else needs this. DI really doesn't like something
going from initialized to uninitialized.
Yes, I feel super-gross about this and am really unhappy about it. I
may end up reverting this if I can find an alternate solution to this
problem.
Swift SVN r27525
threaded into IRGen; tests to follow when that's done.
I made a preliminary effort to make the inliner do the
right thing with try_apply, but otherwise tried to avoid
touching the optimizer any more than was required by the
removal of ApplyInstBase.
Swift SVN r26747
For better consistency with other address-only instruction variants, and to open the door to new exciting existential representations (such as a refcounted boxed representation for ErrorType).
Swift SVN r25902
memory layout and add a SelectInst API that allows for one to access select inst
operands when one does not care about what the cases actually are.
Previously select_enum, select_enum_addr had the following memory layout:
[operands], [cases]
In constrast, select_value had the following layout:
[operand1, case1, operand2, case 2, ...]
The layout for select_value makes it impossible to just visit operands in a
generic way via a higher level API. This is an important operation for many
analyses such as AA on select insts.
This commit does the following:
1. Adds a new abstract parent class for all select instructions called
SelectInst.
2. Adds a new templated implementation parent class that inherits from
SelectInst called SelectInstBase. This handles the complete implementation of
select for all types by templating on CaseTy.
3. Changes SelectEnumAddrInst, SelectEnumInst, SelectValueInst to be thin
classes that inherit from the appropriately specialized SelectInstBase.
I left in SelectEnumInstBase for now as a subclass of SelectInstBase and parent
class of SelectEnum{,Addr}Inst since it provides specific enum APIs that are
used all over the compiler. All of these methods have equivalent methods on
SelectInstBase. I just want to leave them for a later commit so that this commit
stays small.
Swift SVN r24159
storage for arbitrary values.
A buffer doesn't provide any way to identify the type of
value it stores, and so it cannot be copied, moved, or
destroyed independently; thus it's not available as a
first-class type in Swift, which is why I've labelled
it Unsafe. But it does allow an efficient means of
opaquely preserving information between two cooperating
functions. This will be useful for the adjustments I
need to make to materializeForSet to support safe
addressors.
I considered making this a SIL type category instead,
like $@value_buffer T. This is an attractive idea because
it's generally better-typed. The disadvantages are that:
- it would need its own address_to_pointer equivalents and
- alloc_stack doesn't know what type will be stored in
any particular buffer, so there still needs to be
something opaque.
This representation is a bit gross, but it'll do.
Swift SVN r23903
Using the intrinsics is obnoxious because I needed them
to return Builtin.NativeObject?, but there's no reasonable
way to safely generate optional types from Builtins.cpp.
Ugh.
Dave and I also decided that there's no need for
swift_tryPin to allow a null object.
Swift SVN r23824
Having the wrong memory behavior here can cause SIL Code Motion to move
retains and releases across these instructions, which is invalid.
This resulted in a retain-after-free issue in the DollarChain benchmark
after I committed r23673 (which was soon after backed out in r23679).
Swift SVN r23722
or pointer depends on another for validity in a
non-obvious way.
Also, document some basic value-propagation rules
based roughly on the optimization rules for ARC.
Swift SVN r23695
This is a type that has ownership of a reference while allowing access to the
spare bits inside the pointer, but which can also safely hold an ObjC tagged pointer
reference (with no spare bits of course). It additionally blesses one
Foundation-coordinated bit with the meaning of "has swift refcounting" in order
to get a faster short-circuit to native refcounting. It supports the following
builtin operations:
- Builtin.castToBridgeObject<T>(ref: T, bits: Builtin.Word) ->
Builtin.BridgeObject
Creates a BridgeObject that contains the bitwise-OR of the bit patterns of
"ref" and "bits". It is the user's responsibility to ensure "bits" doesn't
interfere with the reference identity of the resulting value. In other words,
it is undefined behavior unless:
castReferenceFromBridgeObject(castToBridgeObject(ref, bits)) === ref
This means "bits" must be zero if "ref" is a tagged pointer. If "ref" is a real
object pointer, "bits" must not have any non-spare bits set (unless they're
already set in the pointer value). The native discriminator bit may only be set
if the object is Swift-refcounted.
- Builtin.castReferenceFromBridgeObject<T>(bo: Builtin.BridgeObject) -> T
Extracts the reference from a BridgeObject.
- Builtin.castBitPatternFromBridgeObject(bo: Builtin.BridgeObject) -> Builtin.Word
Presents the bit pattern of a BridgeObject as a Word.
BridgeObject's bits are set up as follows on the various platforms:
i386, armv7:
No ObjC tagged pointers
Swift native refcounting flag bit: 0x0000_0001
Other available spare bits: 0x0000_0002
x86_64:
Reserved for ObjC tagged pointers: 0x8000_0000_0000_0001
Swift native refcounting flag bit: 0x0000_0000_0000_0002
Other available spare bits: 0x7F00_0000_0000_0004
arm64:
Reserved for ObjC tagged pointers: 0x8000_0000_0000_0000
Swift native refcounting flag bit: 0x4000_0000_0000_0000
Other available spare bits: 0x3F00_0000_0000_0007
TODO: BridgeObject doesn't present any extra inhabitants. It ought to at least provide null as an extra inhabitant for Optional.
Swift SVN r22880
This fixes <rdar://problem/18603195> Changing frontend to emit "select_enum_addr" instead of calling _doesOptionalHaveValue causes miscompiles with optimization
The same applies for the switch_enum_addr_inst, but currently no optimization checks for the MayRead memory attribute of
term-instructions. So for switch_enum_addr_inst the missing MayRead caused no problem.
Swift SVN r22700
Modeling builtins as first-class function values doesn't really make sense because there's no real function value to emit, and modeling them this way complicates passes that work with builtins because they have to invent function types for builtin invocations. It's much more straightforward to have a single instruction that references the builtin by ID, along with the type information for the necessary values, type parameters, and results, so add a new "builtin" instruction that directly represents a builtin invocation. NFC yet.
Swift SVN r22690
layouts. Introduce new SIL instructions to initialize
and open existential metatype values.
Don't actually, y'know, lift any of the restriction on
existential metatypes; just pointlessly burn extra
memory storing them.
Swift SVN r22592
We want to be able to work around problems with non-failable
Objective-C initializers actually failing, which can happen when the
API audit data incorrectly marks an initializer as non-failable.
Swift SVN r21711
These instructions do a bitcast operation without stack traffic (at the SIL level). unchecked_trivial_bit_cast represents a conversion from a potentially nontrivial type to a trivial type, such as from a class reference to Int. unchecked_ref_bit_cast represents a conversion between types for which retain_value and release_value has equivalent effects when applied on the input or output values.
Swift SVN r19053
instructions. Make them subclasses of RefCountingInst.
This is a useful superclass that enables one to quickly perform queries
on whether or not a specific instruction is an instruction that
manipulates reference counts.
Swift SVN r18891
Add objc_metatype_to_object and objc_existential_metatype_to_object to convert metatypes to AnyObject, and objc_protocol to get a reference to an @objc protocol descriptor as a Protocol class instance.
Swift SVN r18824
put the result in a different place.
WIP: no IRGen support yet.
This will eventually be the required form when casting
to an address-only type; the existing instructions will
have only scalar outputs.
Swift SVN r18780
An unsafe cast from a base to a derived class isn't really all that different from one from Builtin.NativeObject to an arbitrary class, so relax this pair of instructions to allow an arbitrary bitcast. This only combines the instructions; it doesn't attempt to simplify any codegen that was emitting round-trip casts before yet.
Swift SVN r16736
This allows the payload for a loadable enum to be unsafely projected without branching, enabling more enum optimizations when switch branches can be culled or when indirect enum code can be promoted.
Swift SVN r16729