Make `SynthesizedFileUnit` attached to a `SourceFile`. This seemed like the
least ad-hoc approach to avoid doing unnecessary work for other `FileUnit`s.
TBDGen: when visiting a `SourceFile`, also visit its `SynthesizedFileUnit` if
it exists.
Serialization: do not treat `SynthesizedFileUnit` declarations as xrefs when
serializing the companion `SourceFile`.
Resolves TF-1239: AutoDiff test failures.
JVP functions are forward-mode derivative functions. They take original
arguments and return original results and a differential function. Differential
functions take derivatives wrt arguments and return derivatives wrt results.
`JVPEmitter` is a cloner that emits JVP and differential functions at the same
time. In JVP functions, function applications are replaced with JVP function
applications. In differential functions, function applications are replaced
with differential function applications.
In JVP functions, each basic block takes a differential struct containing callee
differentials. These structs are consumed by differential functions.
Make `ADContext` lazily create a `SynthesizedFileUnit` instead of creating one
during `ADContext` construction. This avoids always creating a
`SynthesizedFileUnit` in every module, since differentiation is a mandatory
transform that always runs.
It was nonetheless useful to test always creating a `SynthesizedFileUnit` for
testing purposes.
Add implicit declarations generated by the differentiation transform to a
`SynthesizedFileUnit` instead of an ad-hoc pre-existing `SourceFile`.
Resolves TF-1232: type reconstruction for AutoDiff-generated declarations.
Previously, type reconstruction failed because retroactively adding declarations
to a `SourceFile` did not update name lookup caches.
`PullbackEmitter` is a visitor that emits pullback functions. It implements
reverse-mode automatic differentiation, along with `VJPEmitter`.
Pullback functions take derivatives with respect to outputs and return
derivatives with respect to inputs. Every active value/address in an original
function has a corresponding adjoint value/buffer in the pullback function.
Pullback functions consume pullback structs and predecessor enums constructed
by VJP functions.
`VJPEmitter` is a cloner that emits VJP functions. It implements reverse-mode
automatic differentiation, along with `PullbackEmitter`.
`VJPEmitter` clones an original function, replacing function applications with
VJP function applications. In VJP functions, each basic block takes a pullback
struct (containing callee pullbacks) and produces a predecessor enum: these data
structures are consumed by pullback functions.
`LinearMapInfo` contains information about linear map structs and branching
trace enums, which are auxiliary data structures created by the differentiation
transform.
These data structures are constructed in JVP/VJP functions and consumed in
differential/pullback functions.
Canonicalizes `differentiable_function` instructions by filling in missing
derivative function operands.
Derivative function emission rules, based on the original function value:
- `function_ref`: look up differentiability witness with the exact or a minimal
superset derivative configuration. Emit a `differentiability_witness_function`
for the derivative function.
- `witness_method`: emit a `witness_method` with the minimal superset derivative
configuration for the derivative function.
- `class_method`: emit a `class_method` with the minimal superset derivative
configuration for the derivative function.
If an *actual* emitted derivative function has a superset derivative
configuration versus the *desired* derivative configuration, create a "subset
parameters thunk" to thunk the actual derivative to the desired type.
For `differentiable_function` instructions formed from curry thunk applications:
clone the curry thunk (with type `(Self) -> (T, ...) -> U`) and create a new
version with type `(Self) -> @differentiable (T, ...) -> U`.
Progress towards TF-1211.
The differentiation transform does the following:
- Canonicalizes differentiability witnesses by filling in missing derivative
function entries.
- Canonicalizes `differentiable_function` instructions by filling in missing
derivative function operands.
- If necessary, performs automatic differentiation: generating derivative
functions for original functions.
- When encountering non-differentiability code, produces a diagnostic and
errors out.
Partially resolves TF-1211: add the main canonicalization loop.
To incrementally stage changes, derivative functions are currently created
with empty bodies that fatal error with a nice message.
Derivative emitters will be upstreamed separately.
* [Typechecker] Allow enum cases without payload to witness a static get-only property with Self type protocol requirement
* [SIL] Add support for payload cases as well
* [SILGen] Clean up comment
* [Typechecker] Re-enable some previously disabled witness matching code
Also properly handle the matching in some cases
* [Test] Update typechecker tests with payload enum test cases
* [Test] Update SILGen test
* [SIL] Add two FIXME's to address soon
* [SIL] Emit the enum case constructor unconditionally when an enum case is used as a witness
Also, tweak SILDeclRef::getLinkage to update the 'limit' to 'OnDemand' if we have an enum declaration
* [SILGen] Properly handle a enum witness in addMethodImplementation
Also remove a FIXME and code added to workaround the original bug
* [TBDGen] Handle enum case witness
* [Typechecker] Fix conflicts
* [Test] Fix tests
* [AST] Fix indentation in diagnostics def file
Devirtualizing try_apply modified the CFG, but passes that run
devirtualization were not invalidating any CFG analyses, such as the
domtree.
This could hypothetically have caused miscompilation, but will be
caught by running with -sil-verify-all.
If EscapeAnalysis verification runs on unreachable code, it asserts
with "Missing escape connection graph mapping" because the connection
graph builder only runs on reachable blocks.
Add a ReachableBlocks utility and use it during verification.
Fixes <rdar://problem/60373501> EscapeAnalysis crashes with CFG with
unreachable blocks
We need this anyways for -Onone and I want to do some experiments with running
this very early so I can expose more of the stdlib (modulo inlining) to the new
ownership optimizing passes.
I also changed how the inliner handles inlining around OSSA by changing it to
check early that if the caller is in ossa, then we only inline if all of the
callees that the caller calls are in ossa. The intention is to hopefully avoid
weird swings in code-size/perf due to the inliner heuristic's calculation being
artificially manipulated due to some callees not being available to inline (due
to this difference) when others are already available.
* Simplified the logic for creating static initializers and constant folding for global variables: instead of creating a getter function, directly inline the constant value into the use-sites.
* Wired up the constant folder in GlobalOpt, so that a chains for global variables can be propagated, e.g.
let a = 1
let b = a + 10
let c = b + 5
* Fixed a problem where we didn't create a static initializer if a global is not used in the same module. E.g. a public let variable.
* Simplified the code in general.
rdar://problem/31515927
I was inconsistently providing initialized or uninitialized memory
to the callback when projecting a settable address, depending on
component type. We should always provide an uninitialized address.
We have an optimization in SILCombiner that "inlines" the use of compile-time constant key paths by performing the property access directly instead of calling a runtime function (leading to huge performance gains e.g. for heavy use of @dynamicMemberLookup). However, this optimization previously only supported key paths which solely access stored properties, so computed properties, optional chaining, etc. still had to call a runtime function. This commit generalizes the optimization to support all types of key paths.
I was inconsistently providing initialized or uninitialized memory
to the callback when projecting a settable address, depending on
component type. We should always provide an uninitialized address.
Changes:
* Allow optimizing partial_apply capturing opened existential: we didn't do this originally because it was complicated to insert the required alloc/dealloc_stack instructions at the right places. Now we have the StackNesting utility, which makes this easier.
* Support indirect-in parameters. Not super important, but why not? It's also easy to do with the StackNesting utility.
* Share code between dead closure elimination and the apply(partial_apply) optimization. It's a bit of refactoring and allowed to eliminate some code which is not used anymore.
* Fix an ownership problem: We inserted copies of partial_apply arguments _after_ the partial_apply (which consumes the arguments).
* When replacing an apply(partial_apply) -> apply and the partial_apply becomes dead, avoid inserting copies of the arguments twice.
These changes don't have any immediate effect on our current benchmarks, but will allow eliminating curry thunks for existentials.
calls over arrays created from array literals. This enables optimizing
further the output of the OSLogOptimization pass, and results in
highly-compact and optimized IR for calls to the new os log API.
<rdar://58928427>
evaluable calls. The fix makes the check more conservative and
assumes that calls with generic arguments are not dead, as generic
functions with arbitrary side-effects can be invoked through them.
Also, add a few helper functions to the InstructionDeleter utility
that will enable deleting an instruction along with its users.
and eliminate dead code. This is meant to be a replacement for the utility:
recursivelyDeleteTriviallyDeadInstructions. The new utility performs more aggresive
dead-code elimination for ownership SIL.
This patch also migrates most non-force-delete uses of
recursivelyDeleteTriviallyDeadInstructions to the new utility.
and migrates one force-delete use of recursivelyDeleteTriviallyDeadInstructions
(in IRGenPrepare) to use the new utility.
We have an optimization in SILCombiner that "inlines" the use of compile-time constant key paths by performing the property access directly instead of calling a runtime function (leading to huge performance gains e.g. for heavy use of @dynamicMemberLookup). However, this optimization previously only supported key paths which solely access stored properties, so computed properties, optional chaining, etc. still had to call a runtime function. This commit generalizes the optimization to support all types of key paths.
It must be consistent, otherwise the specialized function types may not match for calls in functions with different resilience expansions.
Fixes an assertion crash in the generic specializer.
rdar://problem/57844964
This is needed for cross-module-optimization: CMO marks functions as inlinable. If a private or internal method is referenced from such an inlinable function, it must not be eliminated by dead function elimination after serialization (a method is basically an AbstractFunctionDecl).
For SILFunctions we can do this by simply setting the linkage, but for methods we need another mechanism.
Fixes a potential real bug in the case that SinkAddressProjections moves
projections without notifying SimplifyCFG of the change. This could
fail to update Analyses (probably won't break anything in practice).
Introduce SILInstruction::isPure. Among other things, this can tell
you if it's safe to duplicate instructions at their
uses. SinkAddressProjections should check this before sinking uses. I
couldn't find a way to expose this as a real bug, but it is a
theoretical bug.
Add the SinkAddressProjections functionality to the BasicBlockCloner
utility. Enable address projection sinking for all BasicBlockCloner
clients (the four different kinds of jump-threading that use it). This
brings the compiler much closer to banning all address phis.
The "bugs" were originally introduced a week ago here:
commit f22371bf0b (fork/fix-address-phi, fix-address-phi)
Author: Andrew Trick <atrick@apple.com>
Date: Tue Sep 17 16:45:51 2019
Add SIL SinkAddressProjections utility to avoid address phis.
Enable this utility during jump-threading in SimplifyCFG.
Ultimately, the SIL verifier should prevent all address-phis and we'll
need to use this utility in a few more places.
Fixes <rdar://problem/55320867> SIL verification failed: Unknown
formal access pattern: storage
of OSLogMessage constant evaluable and remove @_transparent annotation
from the methods. Also, improve diagnostics in the OSLogOptimization
pass as now it rely on seeing the appendInterpolation/Literal calls.
ProtocolConformanceRef already has an invalid state. Drop all of the
uses of Optional<ProtocolConformanceRef> and just use
ProtocolConformanceRef::forInvalid() to represent it. Mechanically
translate all of the callers and callsites to use this new
representation.