It must be consistent, otherwise the specialized function types may not match for calls in functions with different resilience expansions.
Fixes an assertion crash in the generic specializer.
rdar://problem/57844964
The XXOptUtils.h convention is already established and parallels
the SIL/XXUtils convention.
New:
- InstOptUtils.h
- CFGOptUtils.h
- BasicBlockOptUtils.h
- ValueLifetime.h
Removed:
- Local.h
- Two conflicting CFG.h files
This reorganization is helpful before I introduce more
utilities for block cloning similar to SinkAddressProjections.
Move the control flow utilies out of Local.h, which was an
unreadable, unprincipled mess. Rename it to InstOptUtils.h, and
confine it to small APIs for working with individual instructions.
These are the optimizer's additions to /SIL/InstUtils.h.
Rename CFG.h to CFGOptUtils.h and remove the one in /Analysis. Now
there is only SIL/CFG.h, resolving the naming conflict within the
swift project (this has always been a problem for source tools). Limit
this header to low-level APIs for working with branches and CFG edges.
Add BasicBlockOptUtils.h for block level transforms (it makes me sad
that I can't use BBOptUtils.h, but SIL already has
BasicBlockUtils.h). These are larger APIs for cloning or removing
whole blocks.
Structurally prevent a number of common anti-patterns involving generic
signatures by separating the interface into GenericSignature and the
implementation into GenericSignatureBase. In particular, this allows
the comparison operators to be deleted which forces callers to
canonicalize the signature or ask to compare pointers explicitly.
Rather than storing the set of input requirements in a
(SIL)SpecializeAttr, store the specialized generic signature. This
prevents clients from having to rebuild the same specialized generic
signature on every use.
This is a large patch; I couldn't split it up further while still
keeping things working. There are four things being changed at
once here:
- Places that call SILType::isAddressOnly()/isLoadable() now call
the SILFunction overload and not the SILModule one.
- SILFunction's overloads of getTypeLowering() and getLoweredType()
now pass the function's resilience expansion down, instead of
hardcoding ResilienceExpansion::Minimal.
- Various other places with '// FIXME: Expansion' now use a better
resilience expansion.
- A few tests were updated to reflect SILGen's improved code
generation, and some new tests are added to cover more code paths
that previously were uncovered and only manifested themselves as
standard library build failures while I was working on this change.
When compiling SwiftOnoneSupport, issue errors for missing functions which are expected in the module.
This ensures ABI compatibility.
rdar://problem/48924409
I am going to add the code in a bit that does the notifications. I tried to pass
down the builder instead of the pass manager. I also tried not to change the
formatting.
rdar://42301529
SubstitutionMaps are now just a trivial pointer-sized value, so
pass them by value instead.
I did have to move a couple of functors from Type.h to SubstitutionMap.h
to resolve some issues with forward declarations.
There isn't a clean cut point here, so switch
GenericSpecializationInformation from SubstitutionList to
SubstitutionMap and carry along dual SubstitutionMap/SubstitutionList
representations for a small part of ReabstractionInfo.
Adds a combined API to output both debug message and optimization remarks.
The previously added test partial_specialization_debug.sil ensures that it's an
NFC for debug output.
The etymology of these terms isn't about race, but "black" = "blocked"
and "white" = "allowed" isn't really a good look these days. In most
cases we weren't using these terms particularly precisely anyway, so
the rephrasing is actually an improvement.
The existing simple mechanism for avoiding infinite generic specialization loops is based on checking the structural depth and width of types passed as generic type parameters. If the depth or the width of a type is above a certain threshold, the type is considered too complex for generic specialization and no specialization is produced. While this approach prevents the possibility of producing an infinite number of generic specializations for ever-growing generic type parameters, it catches the issue too late in some cases, leading to excessive CPU and memory usage.
Therefore, the new method tries to solve the problem at its root. An infinite generic specialization loop can be triggered by specializing a given generic call-site if and only if:
- Doing so would result in a loop inside the specialization graph represented by the `GenericSpecializationInformations`, i.e. it would produce direct or indirect recursion involving a generic call
- The substitutions used by the current generic call-site are structurally more complex than the substitutions used by the same call-site in the previous iteration inside specialization graph. More complex in this context means that the new generic type parameter structurally contains the generic type parameter from a previous iteration inside the specialization graph and has greater structural depth, e.g. `Array<Int>` is more complex than `Int`.
The generic specializer now records all the required information about specializations it produces and uses it later to detect and prevent any generic specializations which would result in an infinite specialization loop. It detects them as early as possible and thus reduces compile times, memory consumption and potentially also reduces the code-size by not generating useless specializations.
- Introduced a new helper class FunctionSignaturePartialSpecializer which provides most of the functionality required for producing a specialized generic signature based on the provided substitutions or requirements. The class consists of many small functions, which should make it easier to understand the code.
- Added a full support for partial specialization of generic parameters with generic substitutions (use flag `-Xllvm -sil-partial-specialization-with-generic-substitutions` to enable it)
- Removed the simpler version of the partial specializer which could partially specialize only generic parameters with non-generic substitutions. It is not needed anymore, because we can handle any substations now when performing the partial specialization.
- The functionality used by the EagerSpecializer to implement the partial specializations required by @_specialize is expressed in terms of FunctionSignaturePartialSpecializer as well. The code implementing it is much smaller now.
Partial specialization of generic parameters with generic substitutions is fully functional, but it is disabled by default, because it needs some tweaks when it comes to compile times and size of produced code. These issues will be addressed in the subsequent commits.
Also, add a third [serializable] state for functions whose bodies we
*can* serialize, but only do so if they're referenced from another
serialized function.
This will be used for bodies synthesized for imported definitions,
such as init(rawValue:), etc, and various thunks, but for now this
change is NFC.
Use -sil-partial-specialization-with-generic-substitutions to enable the partial specialization even in cases of substitutions containing generic replacement types.
Partial specialization is disabled by default. Use -sil-partial-specialization to enable it.
Use -sil-partial-specialization-with-generic-substitutions to enable the partial specialization even in cases of substitutions containing generic replacement types.
SubstitutionList is going to be a more compact representation of
a SubstitutionMap, suitable for inline allocation inside another
object.
For now, it's just a typedef for ArrayRef<Substitution>.
Separate formal lowered types from SIL types.
The SIL type of an argument will depend on the SIL module's conventions.
The module conventions are determined by the SIL stage and LangOpts.
Almost NFC, but specialized manglings are broken incidentally as a result of
fixes to the way passes handle book-keeping of aruments. The mangler is fixed in
the subsequent commit.
Otherwise, NFC is intended, but quite possible do to rewriting the logic in many
places.
Change the optimizer to only make specializations [fragile] if both the
original callee is [fragile] *and* the caller is [fragile].
Otherwise, the specialized callee might be [fragile] even if it is never
called from a [fragile] function, which inhibits the optimizer from
devirtualizing calls inside the specialization.
This opens up some missed optimization opportunities in the performance
inliner and devirtualization, which currently reject fragile->non-fragile
references:
TEST | OLD_MIN | NEW_MIN | DELTA (%) | SPEEDUP
--- | --- | --- | --- | ---
DictionaryRemoveOfObjects | 38391 | 35859 | -6.6% | **1.07x**
Hanoi | 5853 | 5288 | -9.7% | **1.11x**
Phonebook | 18287 | 14988 | -18.0% | **1.22x**
SetExclusiveOr_OfObjects | 20001 | 15906 | -20.5% | **1.26x**
SetUnion_OfObjects | 16490 | 12370 | -25.0% | **1.33x**
Right now, passes other than performance inlining and devirtualization
of class methods are not checking invariants on [fragile] functions
at all, which was incorrect; as part of the work on building the
standard library with -enable-resilience, I added these checks, which
regressed performance with resilience disabled. This patch makes up for
these regressions.
Furthermore, once SIL type lowering is aware of resilience, this will
allow the stack promotion pass to make further optimizations after
specializing [fragile] callees.
We ended up adding the same instruction twice to a SmallVector of
instructions to be deleted. To avoid this, we'll track these
to-be-deleted instructions in a SmallSetVector instead.
We were also failing to add an instruction that we can delete to the set
of instructions to be deleted, so I fixed that as well.
I've added a test case, but it's currently disabled because fixing this
turned up another issue in the same code which I still need to take a
look at.
Fixes rdar://problem/25369617.
This was mistakenly reverted in an attempt to fix buildbots.
Unfortunately it's now smashed into one commit.
---
Introduce @_specialize(<type list>) internal attribute.
This attribute can be attached to generic functions. The attribute's
arguments must be a list of concrete types to be substituted in the
function's generic signature. Any number of specializations may be
associated with a generic function.
This attribute provides a hint to the compiler. At -O, the compiler
will generate the specified specializations and emit calls to the
specialized code in the original generic function guarded by type
checks.
The current attribute is designed to be an internal tool for
performance experimentation. It does not affect the language or
API. This work may be extended in the future to add user-visible
attributes that do provide API guarantees and/or direct dispatch to
specialized code.
This attribute works on any generic function: a freestanding function
with generic type parameters, a nongeneric method declared in a
generic class, a generic method in a nongeneric class or a generic
method in a generic class. A function's generic signature is a
concatenation of the generic context and the function's own generic
type parameters.
e.g.
struct S<T> {
var x: T
@_specialize(Int, Float)
mutating func exchangeSecond<U>(u: U, _ t: T) -> (U, T) {
x = t
return (u, x)
}
}
// Substitutes: <T, U> with <Int, Float> producing:
// S<Int>::exchangeSecond<Float>(u: Float, t: Int) -> (Float, Int)
---
[SILOptimizer] Introduce an eager-specializer pass.
This pass finds generic functions with @_specialized attributes and
generates specialized code for the attribute's concrete types. It
inserts type checks and guarded dispatch at the beginning of the
generic function for each specialization. Since we don't currently
expose this attribute as API and don't specialize vtables and witness
tables yet, the only way to reach the specialized code is by calling
the generic function which performs the guarded dispatch.
In the future, we can build on this work in several ways:
- cross module dispatch directly to specialized code
- dynamic dispatch directly to specialized code
- automated specialization based on less specific hints
- partial specialization
- and so on...
I reorganized and refactored the optimizer's generic utilities to
support direct function specialization as opposed to apply
specialization.
Temporarily reverting @_specialize because stdlib unit tests are
failing on an internal branch during deserialization.
This reverts commit e2c43cfe14, reversing
changes made to 9078011f93.
This pass finds generic functions with @_specialized attributes and
generates specialized code for the attribute's concrete types. It
inserts type checks and guarded dispatch at the beginning of the
generic function for each specialization. Since we don't currently
expose this attribute as API and don't specialize vtables and witness
tables yet, the only way to reach the specialized code is by calling
the generic function which performs the guarded dispatch.
In the future, we can build on this work in several ways:
- cross module dispatch directly to specialized code
- dynamic dispatch directly to specialized code
- automated specialization based on less specific hints
- partial specialization
- and so on...
I reorganized and refactored the optimizer's generic utilities to
support direct function specialization as opposed to apply
specialization.