Make sure we mangle opaque types using the same settings as the
debugger mangling (with OptimizeProtocolNames = false) to ensure
that we can reconstruct those names again.
wrapped value placeholder in an init(wrappedValue:) call that was previously
injected as an OpaqueValueExpr. This commit also restores the old design of
OpaqueValueExpr.
Make `SynthesizedFileUnit` attached to a `SourceFile`. This seemed like the
least ad-hoc approach to avoid doing unnecessary work for other `FileUnit`s.
TBDGen: when visiting a `SourceFile`, also visit its `SynthesizedFileUnit` if
it exists.
Serialization: do not treat `SynthesizedFileUnit` declarations as xrefs when
serializing the companion `SourceFile`.
Resolves TF-1239: AutoDiff test failures.
Add implicit declarations generated by the differentiation transform to a
`SynthesizedFileUnit` instead of an ad-hoc pre-existing `SourceFile`.
Resolves TF-1232: type reconstruction for AutoDiff-generated declarations.
Previously, type reconstruction failed because retroactively adding declarations
to a `SourceFile` did not update name lookup caches.
`SynthesizedFileUnit` is a container for synthesized declarations. Currently, it
only supports module-level declarations.
It is used by the SIL differentiation transform, which generates implicit struct
and enum declarations.
We were failing to replace opaque types with their underlying type
upon encountering an internal type from the current module. This
could happen when the internal type appeared in generic substitutions,
for example when calling a protocol extension method.
Fixes <rdar://problem/60951353>.
When mangling sugared types for DWARF debug info, we would
occassionally mix generic parameter types from different
generic environments. Since the mangling for a generic
parameter type only recorded the depth and the index, even
for distinct sugared forms, the remangler would produce a
more 'compact' mangling, by folding together generic parameters
that have the same depth/index, but distinct sugarings in the
AST.
Prevent this from happening by desugaring DWARF types the
correct amount, substituting away generic parameters while
preserving everything else.
Also, re-enable the round-trip verification with the remangler.
Fixes <rdar://problem/59496022>, <https://bugs.swift.org/browse/SR-12204>.
Start fixing SR-12526: `@derivative` attribute cross-module deserialization
crash. Remove original `AbstractFunctionDecl *` from `DerivativeAttr` and store
`DeclID` instead, mimicking `DynamicReplacementAttr`.
wrapper original wrapped value expression inside of CSApply.
This prevents type checking the synthesized backing storage initializer
twice - once with the original expression and again with the placeholder.
Like switch cases, a catch clause may now include a comma-
separated list of patterns. The body will be executed if any
one of those patterns is matched.
This patch replaces `CatchStmt` with `CaseStmt` as the children
of `DoCatchStmt` in the AST. This necessitates a number of changes
throughout the compiler, including:
- Parser & libsyntax support for the new syntax and AST structure
- Typechecking of multi-pattern catches, including those which
contain bindings.
- SILGen support
- Code completion updates
- Profiler updates
- Name lookup changes
Type erasure requires a circular construction by its very nature:
@_typeEraser(AnyProto)
protocol Proto { /**/ }
public struct AnyProto : Proto {}
If we eagerly resolve AnyProto, the chain of resolution steps that
deserialization must make goes a little something like this:
Lookup(Proto)
-> Deserialize(@_typeEraser(AnyProto))
-> Lookup(AnyProto)
-> DeserializeInheritedStuff(AnyProto)
-> Lookup(Proto)
This cycle could be broken if the order of incremental inputs was
such that we had already cached the lookup of Proto.
Resolve this cycle in any case by suspending the deserialization of the
type eraser until the point it's demanded by adding
ResolveTypeEraserTypeRequest.
rdar://61270195
* Document a number of legacy conditions and edge cases
* Add lexicon definitions for "dependency source", "dependency sink",
"cascading dependency" and "private dependency"
Convert most of the name lookup requests and a few other ancillary typechecking requests into dependency sinks.
Some requests are also combined sinks and sources in order to emulate the current scheme, which performs scope changes based on lookup flags. This is generally undesirable, since it means those requests cannot immediately be generalized to a purely context-based scheme because they depend on some client-provided entropy source. In particular, the few callers that are providing the "known private" name lookup flag need to be converted to perform lookups in the appropriate private context.
Clients that are passing "no known dependency" are currently considered universally incorrect and are outside the scope of the compatibility guarantees. This means that request-based dependency tracking registers strictly more edges than manual dependency tracking. It also means that once we fixup the clients that are passing "known private", we can completely remove these name lookup flags.
Finally, some tests had to change to accomodate the new scheme. Currently, we go out of our way to register a dependency edge for extensions that declare protocol conformances. However, we were also asserting in at least one test that extensions without protocol conformances weren't registering dependency edges. This is blatantly incorrect and has been undone now that the request-based scheme is automatically registering this edge.
Request-based incremental dependencies are enabled by default. For the time being, add a flag that will turn them off and switch back to manual dependency tracking.