Migrate the check for whether a given type is representable in
Objective-C, which is currently used to verify when @objc can be
inferred or verify that an explicitly-written @objc is well-formed,
from Sema into a set of queries on the Type within the AST library, so
it can be used in other parts of the compiler.
As part of this refactoring, clean up and improve a number of aspects
of this code:
* Unify the "trivially representable" and "representable" code paths
into a single code path that covers these cases. Clarify the
different levels of "representable" we have in both the code and
in comments.
* Distinguish between representation in C vs. representation in
Objective-C. While we aren't using this now, I'm anticipating it
being useful to allow exporting C interfaces via @_cdecl (or
similar).
* Eliminate the special cases for bridging String/Array/Dictionary/Set
with their Foundation counterparts; we now consult
_ObjectiveCBridgeable conformances exclusively to get this
information.
* Cache foreign-representation information on the ASTContext in a
manner that will let us more easily get the right answer across
different contexts while providing more sharing than the TypeChecker
version.
Annoyingly, this only seemed to fix a small class of error where we
were permitting Unsafe(Mutable)Pointer<T> to be representable in
Objective-C when T was representable but not trivially representable,
e.g., T=String or T=AnyObject.Type.
There's an immediate need for this in the core libs, and we have most of the necessary pieces on hand to make it easy to implement. This is an unpolished initial implementation, with the following limitations, among others:
- It doesn't support bridging error conventions,
- It relies on ObjC interop,
- It doesn't check for symbol name collisions,
- It has an underscored name with required symbol name `@cdecl("symbol_name")`, awaiting official bikeshed painting.
Fix some interface type/context type confusion in the AST synthesis from the previous patch, add a unique private mangling for behavior protocol conformances, and set up SILGen to emit the conformances when property declarations with behaviors are visited. Disable synthesis of the struct memberwise initializer if any instance properties use behaviors; codegen will need to be redesigned here.
Parse 'var [behavior] x: T', and when we see it, try to instantiate the property's
implementation in terms of the given behavior. To start out, behaviors are modeled
as protocols. If the protocol follows this pattern:
```
protocol behavior {
associatedtype Value
}
extension behavior {
var value: Value { ... }
}
```
then the property is instantiated by forming a conformance to `behavior` where
`Self` is bound to the enclosing type and `Value` is bound to the property's
declared type, and invoking the accessors of the `value` implementation:
```
struct Foo {
var [behavior] foo: Int
}
/* behaves like */
extension Foo: private behavior {
@implements(behavior.Value)
private typealias `[behavior].Value` = Int
var foo: Int {
get { return value }
set { value = newValue }
}
}
```
If the protocol requires a `storage` member, and provides an `initStorage` method
to provide an initial value to the storage:
```
protocol storageBehavior {
associatedtype Value
var storage: Something<Value> { ... }
}
extension storageBehavior {
var value: Value { ... }
static func initStorage() -> Something<Value> { ... }
}
```
then a stored property of the appropriate type is instantiated to witness the
requirement, using `initStorage` to initialize:
```
struct Foo {
var [storageBehavior] foo: Int
}
/* behaves like */
extension Foo: private storageBehavior {
@implements(storageBehavior.Value)
private typealias `[storageBehavior].Value` = Int
@implements(storageBehavior.storage)
private var `[storageBehavior].storage`: Something<Int> = initStorage()
var foo: Int {
get { return value }
set { value = newValue }
}
}
```
In either case, the `value` and `storage` properties should support any combination
of get-only/settable and mutating/nonmutating modifiers. The instantiated property
follows the settability and mutating-ness of the `value` implementation. The
protocol can also impose requirements on the `Self` and `Value` types.
Bells and whistles such as initializer expressions, accessors,
out-of-line initialization, etc. are not implemented. Additionally, behaviors
that instantiate storage are currently only supported on instance properties.
This also hasn't been tested past sema yet; SIL and IRGen will likely expose
additional issues.
Similarly to how we've always handled parameter types, we
now recursively expand tuples in result types and separately
determine a result convention for each result.
The most important code-generation change here is that
indirect results are now returned separately from each
other and from any direct results. It is generally far
better, when receiving an indirect result, to receive it
as an independent result; the caller is much more likely
to be able to directly receive the result in the address
they want to initialize, rather than having to receive it
in temporary memory and then copy parts of it into the
target.
The most important conceptual change here that clients and
producers of SIL must be aware of is the new distinction
between a SILFunctionType's *parameters* and its *argument
list*. The former is just the formal parameters, derived
purely from the parameter types of the original function;
indirect results are no longer in this list. The latter
includes the indirect result arguments; as always, all
the indirect results strictly precede the parameters.
Apply instructions and entry block arguments follow the
argument list, not the parameter list.
A relatively minor change is that there can now be multiple
direct results, each with its own result convention.
This is a minor change because I've chosen to leave
return instructions as taking a single operand and
apply instructions as producing a single result; when
the type describes multiple results, they are implicitly
bound up in a tuple. It might make sense to split these
up and allow e.g. return instructions to take a list
of operands; however, it's not clear what to do on the
caller side, and this would be a major change that can
be separated out from this already over-large patch.
Unsurprisingly, the most invasive changes here are in
SILGen; this requires substantial reworking of both call
emission and reabstraction. It also proved important
to switch several SILGen operations over to work with
RValue instead of ManagedValue, since otherwise they
would be forced to spuriously "implode" buffers.
There's a group of methods in `DeclContext` with names that start with *is*,
such as `isClassOrClassExtensionContext()`. These names suggests a boolean
return value, while the methods actually return a type declaration. This
patch replaces the *is* prefix with *getAs* to better reflect their interface.
This class formalizes the common case of the "trailing allocation" idiom we use
frequently. I didn't spot any true bugs while making this change, but I did see
places where we were using the wrong pointer type or casting through void* for
no good reason. This will keep us honest.
I'll get to the other libraries soon.
As part of the improved import of Objective-C APIs into Swift, strip
the "NS" prefix from entities defined in the Foundation
framework. Addresses rdar://problem/24050011, which is part of
SE-0005. Naturally, this is hidden behind -enable-omit-needless-words.
As part of the improved import of Objective-C APIs into Swift, strip
the "NS" prefix from entities defined in the Foundation
framework. Addresses rdar://problem/24050011, which is part of
SE-0005. Naturally, this is hidden behind -enable-omit-needless-words.
This eliminates some minor overheads, but mostly it eliminates
a lot of conceptual complexity due to the overhead basically
appearing outside of its context.
Under -enable-infer-default-arguments, the Clang importer infers some
default arguments for imported declarations. Rather than jumping
through awful hoops to make sure that we create default argument
generators (which will likely imply eager type checking), simply
handle these cases as callee-side expansions.
This makes -enable-infer-default-arguments usable, fixing
rdar://problem/24049927.
Parameters (to methods, initializers, accessors, subscripts, etc) have always been represented
as Pattern's (of a particular sort), stemming from an early design direction that was abandoned.
Being built on top of patterns leads to patterns being overly complicated (e.g. tuple patterns
have to have varargs and default parameters) and make working on parameter lists complicated
and error prone. This might have been ok in 2015, but there is no way we can live like this in
2016.
Instead of using Patterns, carve out a new ParameterList and Parameter type to represent all the
parameter specific stuff. This simplifies many things and allows a lot of simplifications.
Unfortunately, I wasn't able to do this very incrementally, so this is a huge patch. The good
news is that it erases a ton of code, and the technical debt that went with it. Ignoring test
suite changes, we have:
77 files changed, 2359 insertions(+), 3221 deletions(-)
This patch also makes a bunch of wierd things dead, but I'll sweep those out in follow-on
patches.
Fixes <rdar://problem/22846558> No code completions in Foo( when Foo has error type
Fixes <rdar://problem/24026538> Slight regression in generated header, which I filed to go with 3a23d75.
Fixes an overloading bug involving default arguments and curried functions (see the diff to
Constraints/diagnostics.swift, which we now correctly accept).
Fixes cases where problems with parameters would get emitted multiple times, e.g. in the
test/Parse/subscripting.swift testcase.
The source range for ParamDecl now includes its type, which permutes some of the IDE / SourceModel tests
(for the better, I think).
Eliminates the bogus "type annotation missing in pattern" error message when a type isn't
specified for a parameter (see test/decl/func/functions.swift).
This now consistently parenthesizes argument lists in function types, which leads to many diffs in the
SILGen tests among others.
This does break the "sibling indentation" test in SourceKit/CodeFormat/indent-sibling.swift, and
I haven't been able to figure it out. Given that this is experimental functionality anyway,
I'm just XFAILing the test for now. i'll look at it separately from this mongo diff.
mode (take 2)
Allow untyped placeholder to take arbitrary type, but default to Void.
Add _undefined<T>() function, which is like fatalError() but has
arbitrary return type. In playground mode, merely warn about outstanding
placeholders instead of erroring out, and transform placeholders into
calls to _undefined(). This way, code with outstanding placeholders will
only crash when it attempts to evaluate such placeholders.
When generating constraints for an iterated sequence of type T, emit
T convertible to $T1
$T1 conforms to SequenceType
instead of
T convertible to SequenceType
This ensures that an untyped placeholder in for-each sequence position
doesn't get inferred to have type SequenceType. (The conversion is still
necessary because the sequence may have IUO type.) The new constraint
system precipitates changes in CSSimplify and CSDiag, and ends up fixing
18741539 along the way.
(NOTE: There is a small regression in diagnosis of issues like the
following:
class C {}
class D: C {}
func f(a: [C]!) { for _: D in a {} }
It complains that [C]! doesn't conform to SequenceType when it should be
complaining that C is not convertible to D.)
<rdar://problem/21167372>
(Originally Swift SVN r31481)