Before extending TupleShuffleExpr to represent all tuple
conversions allowed by the constraint solver, remove the
parts of TupleShuffleExpr that are no longer needed; this is
support for default arguments, varargs, and scalar-to-tuple and
tuple-to-scalar conversions.
Right now we use TupleShuffleExpr for two completely different things:
- Tuple conversions, where elements can be re-ordered and labels can be
introduced/eliminated
- Complex argument lists, involving default arguments or varargs
The first case does not allow default arguments or varargs, and the
second case does not allow re-ordering or introduction/elimination
of labels. Furthermore, the first case has a representation limitation
that prevents us from expressing tuple conversions that change the
type of tuple elements.
For all these reasons, it is better if we use two separate Expr kinds
for these purposes. For now, just make an identical copy of
TupleShuffleExpr and call it ArgumentShuffleExpr. In CSApply, use
ArgumentShuffleExpr when forming the arguments to a call, and keep
using TupleShuffleExpr for tuple conversions. Each usage of
TupleShuffleExpr has been audited to see if it should instead look at
ArgumentShuffleExpr.
In sequent commits I plan on redesigning TupleShuffleExpr to correctly
represent all tuple conversions without any unnecessary baggage.
Longer term, we actually want to change the representation of CallExpr
to directly store an argument list; then instead of a single child
expression that must be a ParenExpr, TupleExpr or ArgumentShuffleExpr,
all CallExprs will have a uniform representation and ArgumentShuffleExpr
will go away altogether. This should reduce memory usage and radically
simplify parts of SILGen.
Introduce stored property default argument kind
Fix indent
Assign nil to optionals with no initializers
Don't emit generator for stored property default arg
Fix problem with rebase
Indentation
Serialize stored property default arg text
Fix some tests
Add missing constructor in test
Print stored property's initializer expression
cleanups
preserve switch
complete_constructor
formatting
fix conflict
For context, String, Nil, Bool, and Int already behave this way.
Note: Swift can compile against 80 or 64 bit floats as the builtin
literal type. Thus, it was necessary to capture this bit somehow in the
FloatLiteralExpr. This was done as another Type field capturing this
info.
For context, String, Nil, and Bool already behave this way.
Note: Before it used to construct (call, ... (integer_literal)), and the
call would be made explicit / implicit based on if you did eg: Int(3) or
just 3. This however did not translate to the new world so this PR adds
a IsExplicitConversion bit to NumberLiteralExpr. Some side results of
all this are that some warnings changed a little and some instructions are
emitted in a different order.
Instead of constructing calls to ExpressibleByBooleanLiteral.init(booleanLiteral: ...) in CSApply.cpp, just
annotate BooleanLiteralExpr with the selected constructor and do the actual construction during SILGen.
For context, StringLiteralExpr and NilLiteralExpr already behave this way.
Instead of constructing calls to
ExpressibleByNilLiteral.init(nilLiteral: ()) in CSApply.cpp, just
annotate NilLiteralExpr with the selected construtor and do the actual
construction during SILGen.
For context, StringLiteralExpr already behaves this way.
<rdar://problem/46548531> Extend @available to support PackageDescription
This introduces a new private availability kind "_PackageDescription" to
allow availability testing by an arbitary version that can be passed
using a new command-line flag "-swiftpm-manifest-version". The semantics
are exactly same as Swift version specific availability. In longer term,
it maybe possible to remove this enhancement once there is
a language-level availability support for 3rd party libraries.
Motivation:
Swift packages are configured using a Package.swift manifest file. The
manifest file uses a library called PackageDescription, which contains
various settings that can be configured for a package. The new additions
in the PackageDescription APIs are gated behind a "tools version" that
every manifest must declare. This means, packages don't automatically
get access to the new APIs. They need to update their declared tools
version in order to use the new API. This is basically similar to the
minimum deployment target version we have for our OSes.
This gating is important for allowing packages to maintain backwards
compatibility. SwiftPM currently checks for API usages at runtime in
order to implement this gating. This works reasonably well but can lead
to a poor experience with features like code-completion and module
interface generation in IDEs and editors (that use sourcekit-lsp) as
SwiftPM has no control over these features.
`#assert` is a new static assertion statement that will let us write
tests for the new constant evaluation infrastructure that we are working
on. `#assert` works by lowering to a `Builtin.poundAssert` SIL
instruction. The constant evaluation infrastructure will look for these
SIL instructions, const-evaluate their conditions, and emit errors if
the conditions are non-constant or false.
This commit implements parsing, typechecking and SILGen for `#assert`.
Dynamic replacements are currently written in extensions as
extension ExtendedType {
@_dynamicReplacement(for: replacedFun())
func replacement() { }
}
The runtime implementation allows an implementation in the future where
dynamic replacements are gather in a scope and can be dynamically
enabled and disabled.
For example:
dynamic_extension_scope CollectionOfReplacements {
extension ExtentedType {
func replacedFun() {}
}
extension ExtentedType2 {
func replacedFun() {}
}
}
CollectionOfReplacements.enable()
CollectionOfReplacements.disable()
The `Stmt` and `Expr` classes had both `dump` and `print` methods that behaved similarly, making it unclear what each method was for. Following a conversation in https://forums.swift.org/t/unifying-printing-logic-in-astdumper/15995/6 the `dump` methods will be used to print the S-Expression-like ASTs, and the `print` methods will be used to print the more textual ASTPrinter-based representations. The `Stmt` and `Expr` classes seem to be where this distinction was more ambiguous. These changes should fix that ambiguity.
A few other classes also have `print` methods used to print straightforward representations that are neither the S-Expressions nor ASTPrinters. These were left as they are, as they don't cause the same ambiguity.
It should be noted that the ASTPrinter implementations themselves haven't yet been finished and aren't a part of these changes.
Add parsing, type checking, serialization, and deserialization support
for specifying multiple types as "designated" for operator lookup for
a given operator declaration.
The constraint solver still considers only the first type when
deciding the order to attempt the elements of a disjunction, so this
doesn't really change behavior yet.
`\.self` is the final chosen syntax. Implement support for this syntax, and remove the stopgap builtin and `WritableKeyPath._identity` property that were in place before.
The support is gated by a frontend option,
-enable-operator-designated-protocols.
This means that in an operator declaration we can declare a protocol
which has one or more requirements specifying this operator. The
operators from that designated protocol will be the first ones we try
when type checking an expression. If we successfully typecheck using
the operators specified in that protocol, we do not attempt any other
overloads of the same operator.
This makes it possible to dramatically speed up successful
typechecking.
Most of this patch is just removing special cases for materializeForSet
or other fairly mechanical replacements. Unfortunately, the rest is
still a fairly big change, and not one that can be easily split apart
because of the quite reasonable reliance on metaprogramming throughout
the compiler. And, of course, there are a bunch of test updates that
have to be sync'ed with the actual change to code-generation.
This is SR-7134.
I needed this for materializeForSet remission, but it makes inherited
variadic initializers work, too.
I tried to make this a reasonable starting point for a real language
feature. Here's what's still missing:
- syntax
- semantic restrictions to ensure that the expression isn't written in
invalid places or arbitrarily converted
- SILGen support for expansions that aren't the only variadic argument
rdar://16331406
Introduce ExtensionDecl::getExtendedNominal() to provide the nominal
type declaration that the extension declaration extends. Move most
of the existing callers of the callers to getExtendedType() over to
getExtendedNominal(), because they don’t need the full type information.
ExtensionDecl::getExtendedNominal() is itself not very interesting yet,
because it depends on getExtendedType().
For now, the accessors have been underscored as `_read` and `_modify`.
I'll prepare an evolution proposal for this feature which should allow
us to remove the underscores or, y'know, rename them to `purple` and
`lettuce`.
`_read` accessors do not make any effort yet to avoid copying the
value being yielded. I'll work on it in follow-up patches.
Opaque accesses to properties and subscripts defined with `_modify`
accessors will use an inefficient `materializeForSet` pattern that
materializes the value to a temporary instead of accessing it in-place.
That will be fixed by migrating to `modify` over `materializeForSet`,
which is next up after the `read` optimizations.
SIL ownership verification doesn't pass yet for the test cases here
because of a general fault in SILGen where borrows can outlive their
borrowed value due to being cleaned up on the general cleanup stack
when the borrowed value is cleaned up on the formal-access stack.
Michael, Andy, and I discussed various ways to fix this, but it seems
clear to me that it's not in any way specific to coroutine accesses.
rdar://35399664