`\.self` is the final chosen syntax. Implement support for this syntax, and remove the stopgap builtin and `WritableKeyPath._identity` property that were in place before.
* [AST] Remove stored TypeLoc from TypedPattern
TypedPattern was only using this TypeLoc as a means to a TypeRepr, which
caused it to store the pattern type twice (through the superclass and through
the TypeLoc itself.)
This also fixes a bug where deserializing a TypedPattern doesn't store
the type correctly and generally cleans up TypedPattern initialization.
Resolves rdar://44144435
* Address review comments
Parsed declarations would create an untyped 'self' parameter;
synthesized, imported and deserialized declarations would get a
typed one.
In reality the type, if any, depends completely on the properties
of the function in question, so we can just lazily create the
'self' parameter when needed.
If the function already has a type, we give it a type right there;
otherwise, we check if a 'self' was already created when we
compute a function's type and set the type of 'self' then.
I needed this for materializeForSet remission, but it makes inherited
variadic initializers work, too.
I tried to make this a reasonable starting point for a real language
feature. Here's what's still missing:
- syntax
- semantic restrictions to ensure that the expression isn't written in
invalid places or arbitrarily converted
- SILGen support for expansions that aren't the only variadic argument
rdar://16331406
For now, the accessors have been underscored as `_read` and `_modify`.
I'll prepare an evolution proposal for this feature which should allow
us to remove the underscores or, y'know, rename them to `purple` and
`lettuce`.
`_read` accessors do not make any effort yet to avoid copying the
value being yielded. I'll work on it in follow-up patches.
Opaque accesses to properties and subscripts defined with `_modify`
accessors will use an inefficient `materializeForSet` pattern that
materializes the value to a temporary instead of accessing it in-place.
That will be fixed by migrating to `modify` over `materializeForSet`,
which is next up after the `read` optimizations.
SIL ownership verification doesn't pass yet for the test cases here
because of a general fault in SILGen where borrows can outlive their
borrowed value due to being cleaned up on the general cleanup stack
when the borrowed value is cleaned up on the formal-access stack.
Michael, Andy, and I discussed various ways to fix this, but it seems
clear to me that it's not in any way specific to coroutine accesses.
rdar://35399664
The storage kind has been replaced with three separate "impl kinds",
one for each of the basic access kinds (read, write, and read/write).
This makes it far easier to mix-and-match implementations of different
accessors, as well as subtleties like implementing both a setter
and an independent read/write operation.
AccessStrategy has become a bit more explicit about how exactly the
access should be implemented. For example, the accessor-based kinds
now carry the exact accessor intended to be used. Also, I've shifted
responsibilities slightly between AccessStrategy and AccessSemantics
so that AccessSemantics::Ordinary can be used except in the sorts of
semantic-bypasses that accessor synthesis wants. This requires
knowing the correct DC of the access when computing the access strategy;
the upshot is that SILGenFunction now needs a DC.
Accessor synthesis has been reworked so that only the declarations are
built immediately; body synthesis can be safely delayed out of the main
decl-checking path. This caused a large number of ramifications,
especially for lazy properties, and greatly inflated the size of this
patch. That is... really regrettable. The impetus for changing this
was necessity: I needed to rework accessor synthesis to end its reliance
on distinctions like Stored vs. StoredWithTrivialAccessors, and those
fixes were exposing serious re-entrancy problems, and fixing that... well.
Breaking the fixes apart at this point would be a serious endeavor.
* Implement #warning and #error
* Fix #warning/#error in switch statements
* Fix AST printing for #warning/#error
* Add to test case
* Add extra handling to ParseDeclPoundDiagnostic
* fix dumping
* Consume the right paren even in the failure case
* Diagnose extra tokens on the same line after a diagnostic directive
This has three principal advantages:
- It gives some additional type-safety when working
with known accessors.
- It makes it significantly easier to test whether a declaration
is an accessor and encourages the use of a common idiom.
- It saves a small amount of memory in both FuncDecl and its
serialized form.
* Simplify TupleTypeRepr parsing
This patch introduces a TupleTypeReprElement struct that holds the
locations for all relevant bits of tuple elements. It removes the
NameLoc and UnderscoreLoc arrays from TupleTypeReprElement in favor of
holding each of these on TupleTypeReprElement. These extra bits of info
are required for full-fidelity representation in the Syntax library.
* Remove TupleTypeReprBitfields and move EllipsisLoc out of TrailingObjects
* Update users of TupleTypeRepr
* Don't resize the elts if we're going to push_back
* getType -> getElementType
* Move ellipsis back into TrailingObjects.
* Move NumElements into TupleTypeReprBitfields
It's particularly likely someone will try to type `\(foo)`, which looks like a string interpolation segment, outside of a string literal, so give that case a special diagnostic. Fixes rdar://problem/32315365.
Resolves: https://bugs.swift.org/browse/SR-4426
* Make IfConfigDecl be able to hold ASTNodes
* Parse #if as IfConfigDecl
* Stop enclosing toplevel #if into TopLevelCodeDecl.
* Eliminate IfConfigStmt
As such, we no longer insert two placeholders for initializers that
need two vtable slots; instead we record that in the
MissingMemberDecl. I can see MissingMemberDecl growing to be something
we'd actually show to users, that can be used for other kinds of
declarations that don't have vtable entries, but for now I'm not going
to worry about any of that.
Replace `NameOfType foo = dyn_cast<NameOfType>(bar)` with DRY version `auto foo = dyn_cast<NameOfType>(bar)`.
The DRY auto version is by far the dominant form already used in the repo, so this PR merely brings the exceptional cases (redundant repetition form) in line with the dominant form (auto form).
See the [C++ Core Guidelines](https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#es11-use-auto-to-avoid-redundant-repetition-of-type-names) for a general discussion on why to use `auto` to avoid redundant repetition of type names.
This introduces a few unfortunate things because the syntax is awkward.
In particular, the period and following token in \.[a], \.? and \.! are
token sequences that don't appear anywhere else in Swift, and so need
special handling. This is somewhat compounded by \foo.bar.baz possibly
being \(foo).bar.baz or \(foo.bar).baz (parens around the type), and,
furthermore, needing to distinguish \Foo?.bar from \Foo.?bar.
rdar://problem/31724243
Storing this separately is unnecessary since we already
serialize the enum element's interface type. Also, this
eliminates one of the few remaining cases where we serialize
archetypes during AST serialization.
This commit introduces new kind of requirements: layout requirements.
This kind of requirements allows to expose that a type should satisfy certain layout properties, e.g. it should be a trivial type, have a given size and alignment, etc.