Previously we stored this inside each default argument
initializer context. This was overkill, because it is
the same for all default arguments in a single function,
and also insufficient, because initializer contexts are
not serialized and thus not available in SILGen when
the function is in a different module.
Instead store it directly inside the function and
serialize it.
NFC for now, since SILGen isn't using this yet.
"Accessibility" has a different meaning for app developers, so we've
already deliberately excised it from our diagnostics in favor of terms
like "access control" and "access level". Do the same in the compiler
now that we aren't constantly pulling things into the release branch.
Rename AccessibilityAttr to AccessControlAttr and
SetterAccessibilityAttr to SetterAccessAttr, then track down the last
few uses of "accessibility" that don't have to do with
NSAccessibility. (I left the SourceKit XPC API alone because that's
supposed to be more stable.)
"Accessibility" has a different meaning for app developers, so we've
already deliberately excised it from our diagnostics in favor of terms
like "access control" and "access level". Do the same in the compiler
now that we aren't constantly pulling things into the release branch.
This commit changes the 'Accessibility' enum to be named 'AccessLevel'.
Rather than pretend that the requirement signature of a protocol is a
full, well-formed generic signature that one can meaningfully query,
treat it as a flat set of requirements. Nearly all clients already did
this, but make it official. NFC
The -enable-testing flag makes ValueDecl::getEffectiveAccess()
say that internal declarations are public.
This would lead us to emit spurious diagnostics if a default
argument of an internal function referenced a private symbol,
for example, which is something we actually want to allow.
This is a second revision of the patch -- instead of changing
getEffectiveAccess() to take an extra parameter, this changes
getFormalAccessScope() instead.
Fixes <rdar://problem/32592973>.
The -enable-testing flag makes ValueDecl::getEffectiveAccess()
say that internal declarations are public.
This would lead us to emit spurious diagnostics if a default
argument of an internal function referenced a private symbol,
for example, which is something we actually want to allow.
Hack around this by adding a new 'forLinkage' parameter to
getEffectiveAccess(). When this is false, we ignore the
-enable-testing flag, and only look for the @_versioned
attribute.
I'm not very happy with the fix, because it only compliates
the subtle behaviors of getFormalAccess(), getEffectiveAccess()
and getFormalAccessScope() further. But refactoring this is
a bigger change than I'm willing to put into swift-4.0-branch.
Fixes <rdar://problem/32592973>.
Printing a declaration's name using `<<` and `getBaseName()` is be
independent of the return type of `getBaseName()` which will change in
the future from `Identifier` to `DeclBaseName`
The AST verifier was causing deserialization of generic environments,
which slows things down considerably and affects our ability to test
for laziness in deserialization. Prevent it from doing so---and only
do the extra checkig if something else deserialized the generic
environment already.
... except there are some cases where it happens through means that
are harder to control (e.g., the AST walker for patterns) that need
more thought.
When performing a name lookup from inside of a protocol
or extension, skip directly to the source file context
when we are done visiting the protocol or extension.
Otherwise, if we have invalid code where the protocol
or extension is nested inside another type, we might
find a member whose type contains generic parameters
of the outer type; these parameters will not resolve,
since we do not model protocols or extensions nested
inside generic contexts (yet?).
This supercedes an earlier workaround for a similar
issue; the new workaround fixes more crashes.
This is needed to avoid crasher regressions with an
upcoming patch.
This crash happens because shouldAddSelfFixit (a check for the expected_self_before_reference diagnotic) performs name lookup inside the parser, which causes a search for extensions, which triggers the mangler, which can get confused if we are in an unfinished declaration (a PatternBindingInitilizer in this case).
A cleaner fix would be to move that logic inside Sema, but it would require much more refactoring that I don’t feel comfortable doing. Instead, this band-aid checks if the innermost type is inside a local context. If that’s the case, we can ignore the search for extensions.
A lot of files transitively include Expr.h, because it was
included from SILInstruction.h, SILLocation.h and SILDeclRef.h.
However in reality most of these files don't do anything
with Exprs, especially not anything in IRGen or the SILOptimizer.
Now we're down to 171 files in the frontend which depend on
Expr.h, which is still a lot but much better than before.
Piggybacks some resilience diagnostics onto the availability
checking code.
Public and versioned functions with inlineable bodies can only
reference other public and internal entities, since the SIL code
for the function body is serialized and stored as part of the
module.
This includes @_transparent functions, @_inlineable functions,
accessors for @_inlineable storage, @inline(__always) functions,
and in Swift 4 mode, default argument expressions.
The new checks are a source-breaking change, however we don't
guarantee source compatibility for underscored attributes.
The new ABI and tests for the default argument model will come in
subsequent commits.
The typedef `swift::Module` was a temporary solution that allowed
`swift::Module` to be renamed to `swift::ModuleDecl` without requiring
every single callsite to be modified.
Modify all the callsites, and get rid of the typedef.
This is intended to have no functional effect, but there was a
minor change to a diagnostic in invalid code in the tests for the
unfinished ASTScope code; I hope I didn't break anything more
fundamental there.
There's no need to walk up from a function or type context -- if
no generic signature (or environment) is set, the parent won't have
one, either, and if we're in the middle of validating the child
context, using the parent's signature or environment to resolve
dependent types is just wrong.
- The DeclContext versions of these methods have equivalents
on the DeclContext class; use them instead.
- The GenericEnvironment versions of these methods are now
static methods on the GenericEnvironment class. Note that
these are not made redundant by the instance methods on
GenericEnvironment, since the static methods can also be
called with a null GenericEnvironment, in which case they
just assert that the type is fully concrete.
- Remove some unnecessary #includes of ArchetypeBuilder.h
and GenericEnvironment.h. Now changes to these files
result in a lot less recompilation.
The substitution only replaces archetypes with abstract generic parameters, so no conformance lookup is necessary, and we can provide a "lookup" callback now that just vends abstract conformances.
(Ideally, we'd be able to do this for mapTypeIntoContext too, but we run into problems with generic signatures with same-type constraints on associated types with protocol requirements. Mapping `t_0_0.AssocType` into such a context will require conformance lookup for the concrete type replacement, since same-type Requirements don't preserve the conformances that satisfy the protocol requirements for the same-type relationship.)