Lazy member loading had an antagonistic relationship with the import-as-member facilities. The member tables were stored in a hash map that is keyed by serialized declaration context. While this was good for importing the entire member set of a given extension, it's in the complete wrong order for lazy member loading, which wants the same data keyed by base name.
Given that it is annoying to redo the globals-as-member tables to support one use case or the other, coupled with the fact that optimizing for one use-case automatically pessimizes the other, just take a page from rdar://18696086 and store the same information twice in two separate formats each optimized for the task at hand.
Preliminary benchmarks indicate that this leads to a 5% reduction in Clang-Imported entities which will drastically speed up most apps that use Dispatch and CoreGraphics.
By convention, most structs and classes in the Swift compiler include a `dump()` method which prints debugging information. This method is meant to be called only from the debugger, but this means they’re often unused and may be eliminated from optimized binaries. On the other hand, some parts of the compiler call `dump()` methods directly despite them being intended as a pure debugging aid. clang supports attributes which can be used to avoid these problems, but they’re used very inconsistently across the compiler.
This commit adds `SWIFT_DEBUG_DUMP` and `SWIFT_DEBUG_DUMPER(<name>(<params>))` macros to declare `dump()` methods with the appropriate set of attributes and adopts this macro throughout the frontend. It does not pervasively adopt this macro in SILGen, SILOptimizer, or IRGen; these components use `dump()` methods in a different way where they’re frequently called from debugging code. Nor does it adopt it in runtime components like swiftRuntime and swiftReflection, because I’m a bit worried about size.
Despite the large number of files and lines affected, this change is NFC.
1. Set the diagnostic location to where the attribute was written (or
to the Clang decl's source, if the attribute came from API notes)
2. Add a note to contact the owners of the framework to make it clear
that the client of the framework didn't do anything wrong.
rdar://problem/52736145
PointerUnion was generalized to be variadic. Replaced uses of
PointerUnion3 with PointerUnion
See also: git-svn-id:
https://llvm.org/svn/llvm-project/llvm/trunk@360962
91177308-0d34-0410-b5e6-96231b3b80d8
This silences the instances of the warning from Visual Studio about not all
codepaths returning a value. This makes the output more readable and less
likely to lose useful warnings. NFC.
Special DeclNames represent names that do not have an identifier in the
surface language. This implies serializing the information about whether
a name is special together with its identifier (if it is not special)
in both the module file and the swift lookup table.
Also lays the groundwork for rdar://problem/16513537, which is about
being able to find an enum by its original top-level name so that we
can show a diagnostic for that. I'll file a public bug about that
later.
rdar://problem/31893305
Shave off a pointer from the EffectiveClangContext, by re-arranging
some of its data. Down to 2 pointers from 3.
Inside of ImportName, factor out the does-it-have-a-value from
multiple stored Optionals so as to shave off a couple of
pointers. Present the same programming interface as before. Down to 8
pointers in size from 10, and still much further to go.
Move SwiftLookupTableReader/Writer into .cpp file, as they are
irrelevant to the rest of the importer, and this allows us to make
them more ImportName aware in the future. Pull more code out of
ClangImporter.cpp.
NFC.
...instead of picking one definition arbitrarily. This comes from the
new "lookup table" design in Swift 3---we no longer just look for any
"visible" (imported) macro definition, but instead need to know them
up front. This works fine when there's only one definition per module,
but for modules like 'OpenGL' on macOS, with mutually-exclusive
submodules 'GL' and 'GL3', the compiler was arbitrarily deciding that
all of the macros the submodules had in common belonged to 'GL'.
The new model tries to decide if it's possible for two modules to be
imported separately, and keeps both macro entries if possible, only
deduplicating equivalent definitions at the last minute (when
importing into Swift). This /still/ doesn't perfectly match the
behavior you'd get in C, where a submodule and its parent module could
theoretically have conflicting definitions and you'd be fine as long
as you only imported one of them, but hopefully (a) it's close enough,
and (b) nobody is doing that. (The Swift compiler will prefer the
definition in the parent module even if the submodule is the only one
imported.)
rdar://problem/26731529
When attempting to compile Swift 2 code (or any Swift code using the
Swift 2 names) in Swift 3, the compiler diagnostics are often entirely
useless because the names have changed radically enough that one
generally gets "no member named 'foo'" errors rather than a helpful
"'foo' was renamed to 'bar'" error. This makes for a very poor user
experience when (e.g.) trying to move Swift 2 code forward to Swift 3.
To improve the experience, when the Swift 2 and Swift 3 names of an
API differ, the Clang importer will produce a "stub" declaration that
matches the Swift 2 API. That stub will be marked with a synthesized
attribute
@available(unavailable, renamed: "the-swift-3-name")
that enables better diagnostics (e.g., "'foo' is unavailable: renamed
to 'bar') along with Fix-Its (courtesy of @jrose-apple's recent work)
that fix the Swift 2 code to compile in Swift 3.
This change addresses much of rdar://problem/25309323 (concerning QoI
of Swift 2 code compiled with a Swift 3 compiler), but some cleanup
remains.
This introduces support for swift_newtype(struct) attribute (also
known as swift_wrapper). The Clang importer will create a brand new
struct corresponding to the annotated typedefs, which has a backing
raw value. Globals of that type are imported as static members on the
struct.
Additionally, this interacts seamlessly with prior import-as-member
work, meaning that the newly created type can be imported onto. Tests
included.
Introduces CoreGraphics.apinotes, in which we enable the
import-as-member inference system. Additionally, include some explicit
SwiftNames, for when inference doesn't produce the right result, and
to aid compatibility with the overlays.
Refactors many of the trivial overlays out, shrinking the
CoreGraphics.swift overlay by over half. Updates in-tree test
cases. The names we currently have will be highly in flux for a while,
and are likely to change frequently over the near term.
There are a few remaining known bugs that are worked around by
apinotes entries.
It's possible for swift_name to make a global declaration into a
member of another entity that has not been seen yet. In such cases,
delay resolution until the end of the translation unit (module). Fixes
the rest of rdar://problem/25502497.
ObjC containers and categories are valid effective Clang decl
contexts, but do not have a canonical declaration. Permit them
alongside translation units.
When an Objective-C class type is annotated with the swift_bridge
value type, bridge it to the named type. Use API notes on Foundation
rather than special cases.
For Objective-C classes where bridging was baked into the Clang
importer (NSString, NSArray, NSDictionary, NSSet), add API notes to
put the appropriate swift_bridge attribute on these Objective-C
classes.
Note: requires Clang update.
Read through attributed types when determing effective Clang decl
context, use lower level CF type information, and const-ify
EffectiveClangContext.
This puts an end to known disappearing imported members.
When printing the interface for a (sub)module, make sure that we only
print those extensions that were created to hold that submodule's
globals that were imported as members.
Whenever we add an entry that corresponds to a global Clang entity
that will be imported as a member, where that member structure isn't
inherently encoded in Clang, separately record it as being a member of
the context in a separate table. Verify that we're getting the entries
we expect in this table.
A swift_name attribute on a global declaration can specify a dotted
name (e.g., SomeStruct.member) to map that global into a member of the
(Swift-)named type. Handle this mapping in DeclName parsing, plumb it
through importFullName, and cope with it in the Swift name lookup
tables (tested via the dump) and importing into a Swift DeclContext
(as-yet-untested). Part of SE-0033.
Previously, the "effective context" parameter to importFullName was
used only during the construction of Swift name lookup tables, so we
can associate each declaration with a context. Expand the role of
"effective context" so it is always a part of ImportedName and is also
used by importDecl when actually importing the enum declaration.
This is partially a cleanup, and partially staging for SE-0033, which
will require this functionality more broadly.
We're going to delay NS prefix stripping for a bit. Change the API
dump script accordingly, and bump the Swift name lookup table format
version number so this doesn't break everyone who has already run
swift-api-dump.py.