Abstract type/heap metadata access goes into MetadataRequest.
Metadata access starting from a heap object goes into GenHeap.
Accessing various components of class metadata goes into GenClass
or MetadataLayout.
The alignment of tail allocated elements was not considered in the allocation call. This caused problems for alignments > 16 bytes.
rdar://problem/37470003
This has three principal advantages:
- It gives some additional type-safety when working
with known accessors.
- It makes it significantly easier to test whether a declaration
is an accessor and encourages the use of a common idiom.
- It saves a small amount of memory in both FuncDecl and its
serialized form.
Only foreign classes and other imported types were making use of the
type metadata reference form in conformance records. Switch those over
to using nominal type descriptors, so we're using nominal type
descriptors for everything possible.
Only Objective-C-defined classes use a different representation now.
Rather than emitting unique, direct type metadata for non-foreign
types, emit a reference to the nominal type descriptor. This collapses
the set of type metadata reference kinds to 3: nominal type
descriptor, (indirect) Objective-C class object, and nonuniqued
foreign type metadata.
Adjust the IRGen for ObjC interop to ensure that the section that
metadata is emitted into the correct section for non-MachO targets.
This also adds a more comprehensive test for ensuring that the IRGen can
now be tested on all targets. Since the ObjC interop is now
controllable via the driver, this test does not require that the
objc_interop feature is present as it is a IRGen test.
This is the first step to remove the `REQUIRES: objc_interop` from the
IRGen tests.
Following up on the fixes for rdar://problem/35330067. If a class inherits a class from another module with missing fields, we need to treat its size and alignment as opaque, just like the base class itself. We also need to lay out such class at runtime, since we don't know the size, alignment, or field offsets at compile time; relying on the ObjC runtime alone will slide the ivar offsets, but not the Swift instance size and alignment. Fixes rdar://problem/35747485.
We would miscompile in mixed-language-version projects when a Swift class was compiled for one language version, while using Objective-C-imported types that are only available to that version, and then imported into a Swift module with a different language version that wasn't able to see all of the properties because of incompatible imported types. This manifested in a number of ways:
- We assumed we could re-derive the constant field offsets of the class's ivars from the layout, which is wrong if properties are missing, causing accesses to final properties or subclass properties to go to the wrong offsets.
- We assumed we could re-derive the instance size and alignment of a class instance in total, causing code to allocate the wrong amount of memory.
- We neglected to account for the space that stored properties take up in the field offset vector of the class object, causing us to load vtable entries for following subclass methods from the wrong offsets.
Eventually, resilience should reduce our exposure to these kinds of problems. As an incremental step in the right direction, when we look at a class from another module in IRGen, treat it as always variably-sized, so we don't try to hardcode offsets, size, or alignment of its instances. When we import a class, and we're unable to import a stored property, leave behind a new kind of MissingMemberDecl that records the number of field offset vector slots it will take up, so that we lay out subclass objects and compute vtable offsets correctly. Fixes rdar://problem/35330067.
A side effect of this is that the RemoteAST library is no longer able to provide fixed field offsets for class ivars. This doesn't appear to impact the lldb test suite, and they will ultimately need to use more abstract access patterns to get ivar offsets from resilient classes (if they aren't already), so I just removed the RemoteAST test cases that tested for class field offsets for now.
"Accessibility" has a different meaning for app developers, so we've
already deliberately excised it from our diagnostics in favor of terms
like "access control" and "access level". Do the same in the compiler
now that we aren't constantly pulling things into the release branch.
This commit changes the 'Accessibility' enum to be named 'AccessLevel'.
Inheritance of a protocol from JavaScriptCore's JSExport protocol is
used to indicate that the methods and properties of that protocol
should be exported to JavaScript. The actual check to determine
whether a protocol (directly) inherits JSExport is performed via the
Objective-C runtime. Note that the presence of JSExport in the
protocol hierarchy is not sufficient; the protocol must directly
inherit JSExport.
Swift warns about redundant conformance requirements and eliminates
them from the requirement signature (and, therefore, the Objective-C
metadata). This behavior is incorrect for JSExport, because the
conformance is actually needed for this API to work properly.
Recognize a protocol's inheritance JSExport specifically (by
name) when computing the requirement signature of the protocol. When
we find such a redundancy, suppress the "redundant conformance
constraint" diagnostic and add a new (hidden) attribute
@_restatedObjCConformance(proto). The attribute is used only by Objective-C
protocol metadata emission to ensure that we get the expected metadata
in the Objective-C runtime.
Fixes rdar://problem/32674145.
To get the full benefit of dyld3 on Darwin platforms, pointer relocations need to be pointer-aligned, which unfortunately requires growing some key path data structures a little bit. This does tidy up some code that had to hack around our lack of unaligned load/store operations on UnsafeRawPointer, at least. While we're here, we can also simplify the identification strategy for reabstracted stored properties; we only need the property index to identify, not the absolute offset. rdar://problem/32318829
We need to use the ivar offset variables in this case, since the Swift field offset vector doesn't pick up the adjusted offsets from the ObjC runtime. Fixes SR-5036 | rdar://problem/32488871.
We would lay out all classes starting with a Swift-style two-word header, even classes that inherit NSObject and therefore don't have Swift refcounting. The ObjC runtime would slide our ivars down for us at realization time, but it's nice to avoid unnecessarily dirtying memory in the not-uncommon case of direct NSObject subclasses.
This is accomplished by recognizing this specific situation and
replacing the 'objc' attribute with a hidden '_objcRuntimeName'
attribute. This /only/ applies to classes that are themselves
non-generic (including any enclosing generic context) but that have
generic ancestry, and thus cannot be exposed directly to Objective-C.
This commit also eliminates '@NSKeyedArchiverClassName'. It was
decided that the distinction between '@NSKeyedArchiverClassName' and
'@objc' was too subtle to be worth explaining to developers, and that
any case where you'd use '@NSKeyedArchiverClassName' was already a
place where the ObjC name wasn't visible at compile time.
This commit does not update diagnostics to reflect this change; we're
going to change them anyway.
rdar://problem/32414557
We can't use global offset variables if we are generic and layout
dependent on a generic parameter because the objective-c layout might
depend on the alignment of the generic stored property ('t' in the
example below).
class Foo<T> : NSFoobar {
var x : AKlass = AKlass()
var y : AKlass = AKlass()
var t : T?
}
SR-4687
rdar://31813495
As such, we no longer insert two placeholders for initializers that
need two vtable slots; instead we record that in the
MissingMemberDecl. I can see MissingMemberDecl growing to be something
we'd actually show to users, that can be used for other kinds of
declarations that don't have vtable entries, but for now I'm not going
to worry about any of that.
Register class names for NSKeyedArchiver and NSKeyedUnarchiver based on the @NSKeyedArchiveLegacy and @_staticInitializeObjCMetadata class attributes.
@NSKeyedArchiveLegacy registers a class name translation.
@_staticInitializeObjCMetadata just makes sure that the metadata of a class is instantiated.
This registration code is executed as a static initializer, like a C++ global constructor.
Replace `NameOfType foo = dyn_cast<NameOfType>(bar)` with DRY version `auto foo = dyn_cast<NameOfType>(bar)`.
The DRY auto version is by far the dominant form already used in the repo, so this PR merely brings the exceptional cases (redundant repetition form) in line with the dominant form (auto form).
See the [C++ Core Guidelines](https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#es11-use-auto-to-avoid-redundant-repetition-of-type-names) for a general discussion on why to use `auto` to avoid redundant repetition of type names.
This gives big code size wins for unused types and also for types, which are never used in a generic context.
Also it reduces the amount of symbols in the symbol table.
The size wins heavily depend on the project. I have seen binary size reductions from 0 to 20% on real world projects.
rdar://problem/30119960
This is NFC in intent, but I had to restructure the code to emit more
of the lists "inline", which means I inevitably altered some IRGen
emission patterns in ways that are visible to tests:
- GenClass emits property/ivar/whatever descriptors in a somewhat
different order.
- An ext method type list is now emitted as just an array, not a struct
containing only that array.
- Protocol descriptors are no longer emitted as packed structs.
I was sorely tempted to stop using packed structs for all the metadata
emission, but didn't really want to update that many tests in one go.
The list of directly inherited protocols of a ProtocolDecl is already
encoded in the requirement signature, as conformance constraints where
the subject is Self. Gather the list from there rather than separately
computing/storing the list of "inherited protocols".