Similarly to Clang, the flag enables coverage instrumentation, and links
`libLLVMFuzzer.a` to the produced binary.
Additionally, this change affects the driver logic, and enables the
concurrent usage of multiple sanitizers.
To make this stick, I've disallowed direct use of that overload of
CreateCall. I've left the Constant overloads available, but eventually
we might want to consider fixing those, too, just to get all of this
code out of the business of manually remembering to pass around
attributes and calling conventions.
The test changes reflect the fact that we weren't really setting
attributes consistently at all, in this case on value witnesses.
The goals here are four-fold:
- provide cleaner internal abstractions
- avoid IR bloat from extra bitcasts
- avoid recomputing function-type lowering information
- allow more information to be propagated from the function
access site (e.g. class_method) to the call site
Use this framework immediately for class and protocol methods.
Use the KeyPath implementation's new support for instantiating and dealing with captures to lower the generic context required to dispatch computed accessors with dependent generics.
forwarding thunks
We omit passing some metatype parameters if they can be reconstructed from
regular arguments. However, the partial apply forwarder so far did not
reconstructing them from such arguments.
SR-4854
rdar://32134723
This means both not crashing when we deserialize the protocol but
also emitting correct offsets for dynamic dispatch through the
protocol's witness table.
Also fix a bug with vtable and witness table slots for
materializeForSet accessors for properties that can't be
imported. Because materializeForSet doesn't have the type of the
property in its signature, it was taking a different failure path from
everything else, and that failure path didn't properly set the name or
flags for the missing member.
Finishes rdar://problem/31878396
Replace `NameOfType foo = dyn_cast<NameOfType>(bar)` with DRY version `auto foo = dyn_cast<NameOfType>(bar)`.
The DRY auto version is by far the dominant form already used in the repo, so this PR merely brings the exceptional cases (redundant repetition form) in line with the dominant form (auto form).
See the [C++ Core Guidelines](https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#es11-use-auto-to-avoid-redundant-repetition-of-type-names) for a general discussion on why to use `auto` to avoid redundant repetition of type names.
Enums with the ns_error_domain attribute represent codes for NSError,
which means Swift developers will expect to interact with them in
terms of Error. SE-0112 improved bridging for these enums to generate
a struct with the following form:
struct MyError: Error {
@objc enum Code: RawRepresentable {
case outOfMemory
case fileNotFound
}
var userInfo: [NSObject: AnyObject] { get }
static var outOfMemory: Code { get }
static var fileNotFound: Code { get }
}
where MyError.Code corresponds to the original MyError enum defined in
Objective-C. Until recently, both the enum and the synthesized struct
were marked as having the original enum as their "Clang node", but
that leads to problems: the struct isn't really ObjC-compatible, and
the two decls have the same USR. (The latter had already been worked
around.)
This commit changes the struct to be merely considered a synthesized
"external definition", with no associated Clang node. This meant
auditing everywhere that's looking for a Clang node and seeing which
ones applied to external definitions in general.
There is one regression in quality here: the generated struct is no
longer printed as part of the Swift interface for a header file, since
it's not actually a decl with a corresponding Clang node. The previous
change to AST printing mitigates this a little by at least indicating
that the enum has become a nested "Code" type.
This gives big code size wins for unused types and also for types, which are never used in a generic context.
Also it reduces the amount of symbols in the symbol table.
The size wins heavily depend on the project. I have seen binary size reductions from 0 to 20% on real world projects.
rdar://problem/30119960
This is NFC in intent, but I had to restructure the code to emit more
of the lists "inline", which means I inevitably altered some IRGen
emission patterns in ways that are visible to tests:
- GenClass emits property/ivar/whatever descriptors in a somewhat
different order.
- An ext method type list is now emitted as just an array, not a struct
containing only that array.
- Protocol descriptors are no longer emitted as packed structs.
I was sorely tempted to stop using packed structs for all the metadata
emission, but didn't really want to update that many tests in one go.
to correctly handle generalized protocol requirements.
The major missing pieces here are that the conformance search
algorithms in both the AST (type substitution) and IRGen
(witness table reference emission) need to be rewritten to
back-track requirement sources, and the AST needs to actually
represent this stuff in NormalProtocolConformances instead
of just doing ???.
The new generality isn't tested yet; I'm looking into that,
but I wanted to get the abstractions in place first.
This was an unnecessary complication and didn't make a lot of
logical sense, because we can recover the witness table from
substitutions when we call a @convention(witness_method) anyway.
Also, to fix materializeForSet for generic subscripts, I want the
materializeForSet *callback* of a protocol witness to have
@convention(witness_method), which requires representing such
functions as a single function pointer in IRGen.
The list of directly inherited protocols of a ProtocolDecl is already
encoded in the requirement signature, as conformance constraints where
the subject is Self. Gather the list from there rather than separately
computing/storing the list of "inherited protocols".
Separate formal lowered types from SIL types.
The SIL type of an argument will depend on the SIL module's conventions.
The module conventions are determined by the SIL stage and LangOpts.
Almost NFC, but specialized manglings are broken incidentally as a result of
fixes to the way passes handle book-keeping of aruments. The mangler is fixed in
the subsequent commit.
Otherwise, NFC is intended, but quite possible do to rewriting the logic in many
places.
When enumerating requirements, always use the archetype anchors to
express requirements. Unlike "representatives", which are simply there
to maintain the union-find data structure used to track equivalence
classes of potential archetypes, archetype anchors are the
ABI-stable canonical types within a fully-formed generic signature.
The test case churn comes from two places. First, while
representatives are *often* the same as the archetype anchors, they
aren't *always* the same. Where they differ, we'll see a change in
both the printed generic signature and, therefore, it's
mangling.
Additionally, requirement inference now takes much greater
care to make sure that the first types in the requirement follow
archetype anchor ordering, so actual conformance requirements occur in
the requirement list at the archetype anchor---not at the first type
that is equivalent to the anchor---which permits the simplification in
IRGen's emission of polymorphic arguments.
This commit introduces new kind of requirements: layout requirements.
This kind of requirements allows to expose that a type should satisfy certain layout properties, e.g. it should be a trivial type, have a given size and alignment, etc.
This is dead code and can be re-added if it is needed. Right now though there
really isnt a ValueOwnershipKind that corresponds to deallocating and I do not
want to add a new ValueOwnershipKind for dead code.
- The DeclContext versions of these methods have equivalents
on the DeclContext class; use them instead.
- The GenericEnvironment versions of these methods are now
static methods on the GenericEnvironment class. Note that
these are not made redundant by the instance methods on
GenericEnvironment, since the static methods can also be
called with a null GenericEnvironment, in which case they
just assert that the type is fully concrete.
- Remove some unnecessary #includes of ArchetypeBuilder.h
and GenericEnvironment.h. Now changes to these files
result in a lot less recompilation.
Changes:
* Terminate all namespaces with the correct closing comment.
* Make sure argument names in comments match the corresponding parameter name.
* Remove redundant get() calls on smart pointers.
* Prefer using "override" or "final" instead of "virtual". Remove "virtual" where appropriate.
Now that Optional's type parameter can be lowered, we can't make the assumption that a substituted nominal type in SIL is usable as-is as a formal type. At this moment, we can at least still rely on the fact that only nominals have methods, so we can at least go up to the original unsubstituted function type, extract the Self type from there, and do formal AST type substitution on it. This is still only a stopgap solution that wouldn't necessarily work once we start allowing conformances to be added to structural types, or even constrained extensions on Optional such as 'extension <T: class, U: class> Optional<(T) -> U>, but is good enough to fix SR-3021 for the language today. We would need something like the "substituted generic signature" concept to fully fix this.
Fixes rdar://problem/28873860, where we would miscompile when lightweight generic classes were extended to conform to Swift protocols because we tried to emit parameters for the class's generic parameters for the witness entry points. Prevent this by lowering the witness into a pseudogeneric function in SILGen, and teaching IRGen to do the right thing for a witness with pseudogeneric parameters.
We don't want the machine calling conventions for closure invocation functions to necessarily be tied to the convention for normal thin functions or methods. NFC yet; for now, 'closure' follows the same behavior as the 'method' convention, but as part of partial_apply simplification it will be a requirement that partial_apply takes a @convention(closure) function and a box and produces a @convention(thick) function from them.
basic block, revert to line number 0 instead of reusing the last location.
This avoids emitting illegal IR if there was no previous location and the
instruction being emitted is a function call.
rdar://problem/28237133