Most of this patch is just removing special cases for materializeForSet
or other fairly mechanical replacements. Unfortunately, the rest is
still a fairly big change, and not one that can be easily split apart
because of the quite reasonable reliance on metaprogramming throughout
the compiler. And, of course, there are a bunch of test updates that
have to be sync'ed with the actual change to code-generation.
This is SR-7134.
This makes it easier to grep for and eventually remove the
remaining usages.
It also allows you to write FunctionType::get({}, ...) to call the
ArrayRef overload empty parameter list, instead of picking the Type
overload and calling it with an empty Type() value.
While I"m at it, in a few places instead of renaming just clean up
usages where it was completely mechanical to do so.
- getAsDeclOrDeclExtensionContext -> getAsDecl
This is basically the same as a dyn_cast, so it should use a 'getAs'
name like TypeBase does.
- getAsNominalTypeOrNominalTypeExtensionContext -> getSelfNominalTypeDecl
- getAsClassOrClassExtensionContext -> getSelfClassDecl
- getAsEnumOrEnumExtensionContext -> getSelfEnumDecl
- getAsStructOrStructExtensionContext -> getSelfStructDecl
- getAsProtocolOrProtocolExtensionContext -> getSelfProtocolDecl
- getAsTypeOrTypeExtensionContext -> getSelfTypeDecl (private)
These do /not/ return some form of 'this'; instead, they get the
extended types when 'this' is an extension. They started off life with
'is' names, which makes sense, but changed to this at some point. The
names I went with match up with getSelfInterfaceType and
getSelfTypeInContext, even though strictly speaking they're closer to
what getDeclaredInterfaceType does. But it didn't seem right to claim
that an extension "declares" the ClassDecl here.
- getAsProtocolExtensionContext -> getExtendedProtocolDecl
Like the above, this didn't return the ExtensionDecl; it returned its
extended type.
This entire commit is a mechanical change: find-and-replace, followed
by manual reformatted but no code changes.
Summary:
CodeView does not recognize zero as an artificial line location
and so a line location of zero causes unexpected behavior when
stepping through user code. If we find a line location of zero
and our scope has not changed, we use the most recent debug
location. That is expected to be the user code that most likely
relates to the current instruction and is similar to the behavior
in LLDB.
Test Plan:
test/DebugInfo/linetable-codeview.swift
This patch adds SIL-level debug info support for variables whose
static type is rewritten by an optimizer transformation. When a
function is (generic-)specialized or inlined, the static types of
inlined variables my change as they are remapped into the generic
environment of the inlined call site. With this patch all inlined
SILDebugScopes that point to functions with a generic signature are
recursively rewritten to point to clones of the original function with
new unique mangled names. The new mangled names consist of the old
mangled names plus the new substituions, similar (or exactly,
respectively) to how generic specialization is handled.
On libSwiftCore.dylib (x86_64), this yields a 17% increase in unique
source vars and a ~24% increase in variables with a debug location.
rdar://problem/28859432
rdar://problem/34526036
Summary:
CodeView does not recognize zero as an artificial line location
and so a line location of zero causes unexpected behavior when
stepping through user code. If we find a line location of zero
and our scope has not changed, we use the most recent debug
location. That is expected to be the user code that most likely
relates to the current instruction and is similar to the behavior
in LLDB.
Test Plan:
test/DebugInfo/linetable-codeview.swift
For now, the accessors have been underscored as `_read` and `_modify`.
I'll prepare an evolution proposal for this feature which should allow
us to remove the underscores or, y'know, rename them to `purple` and
`lettuce`.
`_read` accessors do not make any effort yet to avoid copying the
value being yielded. I'll work on it in follow-up patches.
Opaque accesses to properties and subscripts defined with `_modify`
accessors will use an inefficient `materializeForSet` pattern that
materializes the value to a temporary instead of accessing it in-place.
That will be fixed by migrating to `modify` over `materializeForSet`,
which is next up after the `read` optimizations.
SIL ownership verification doesn't pass yet for the test cases here
because of a general fault in SILGen where borrows can outlive their
borrowed value due to being cleaned up on the general cleanup stack
when the borrowed value is cleaned up on the formal-access stack.
Michael, Andy, and I discussed various ways to fix this, but it seems
clear to me that it's not in any way specific to coroutine accesses.
rdar://35399664
Summary:
There are a few problems with how Swift currently emits location
information for CodeView.
1. WinDbg does not work well with column information so all column
locations must be set to zero.
2. Some instructions, e.g., ``a + b``, will emit ``@llvm.trap()``
and ``unreachable``. Those instructions should have artificial
locations, i.e., they should have a line location of zero.
3. Some instructions, e.g., ``a / b``, will emit ``unreachable``
sandwiched between other code for that instruction. This makes
WinDbg confused and it cannot decide which set of instructions
to break on. Those instructions should have the same line location
as the others.
4. There are several prologue instructions with artificial line
locations that create breaks in the linetables. Those instructions
should have valid line locations, usually at the start of the
function.
5. Case bodies have cleanup instructions with artificial line
locations unless it has a ``do`` block. Those locations should
be the last line in the case block.
Test Plan:
test/DebugInfo/basic.swift
test/DebugInfo/columns.swift
test/DebugInfo/linetable-codeview.swift
test/DebugInfo/line-directive-codeview.swift
This patch adds SIL-level debug info support for variables whose
static type is rewritten by an optimizer transformation. When a
function is (generic-)specialized or inlined, the static types of
inlined variables my change as they are remapped into the generic
environment of the inlined call site. With this patch all inlined
SILDebugScopes that point to functions with a generic signature are
recursively rewritten to point to clones of the original function with
new unique mangled names. The new mangled names consist of the old
mangled names plus the new substituions, similar (or exactly,
respectively) to how generic specialization is handled.
On libSwiftCore.dylib (x86_64), this yields a 17% increase in unique
source vars and a ~24% increase in variables with a debug location.
rdar://problem/28859432
rdar://problem/34526036
This flag is based on Clang's -fdebug-prefix-map, which lets the user remap absolute paths in debug info. This is necessary for reproducible builds and allows debugging to work on a different machine than the one that built the code when paths to the source may be different.
This causes problems for cross-compilation -parse-stdlib tests that
emit debug info. At the moment we have zero of those, but we're
trying to add one.
Also, don't try to load new modules when recording imports. (This
isn't harmful, just inefficient.)
Introduce some metaprogramming of accessors and generally prepare
for storing less-structured accessor lists.
NFC except for a change to the serialization format.
instead of using name and decl context.
The advantages of this approach are three-fold:
- This is necessary to support inlined generic functions.
- We can retire the debugger-specific type name manfgling mode for archetypes.
- This saves 270kb of debug information in the x86_64 libSwiftCore.dylib alone.
<rdar://problem/38306256>
Upstream has renamed the DEBUG() macro to LLVM_DEBUG. This updates swift
accordingly:
$ find . -name \*.cpp -print -exec sed -i "" -E "s/ DEBUG\(/ LLVM_DEBUG(/g" {} \;
In the majority of the use-cases transparent functions are inlined by
the mandatory inliner which by design drops all debug info and
pretends the inlined instructions were always part of the
caller. Since an outlined copy of the function is often still
generated, attaching debug locations to it is inconsistent and can
create the false impression that it were possible to set a breakpoint
in such a function when in reality these functions are only there for
very few edge cases.
<rdar://problem/40258813>