* [Diagnostics] Experimental diagnostic printing updates
This new style directly annotates small snippets of code with
error messages, highlights and fix-its. It also uses color more
effectively to highlight important segments.
* [Diagnostics] Stage educational notes and experimental formatting behind separate frontend flags
educational notes -> -enable-educational-notes
formatting -> -enable-experimental-diagnostic-formatting
* [Diagnostics] Refactor expensive line lookups in diag formatting
* [Diagnostics] Refactor some PrintingDiagnosticConsumer code into a flush method
* [Diag-Experimental-Formatting] Custom formatting for Xcode editor placeholders
* [Diag-Experimental-Formatting] Better and more consistent textual description of fix its
* [Diags-Experimental-Formatting] Handle lines with tab characters correctly when rendering highlights and messages
Tabs are converted to 2 spaces for display purposes.
* [Diag-Experimental-Formatting] Refactor byte-to-column mapping for efficiency
* [Diag-Experimental-Formatting] Fix line number indent calculation
* [Diag-Experimental-Formatting] Include indicators of insertions and deletions in the highlight line
Inserts are underlined by green '+' chars, deletions by red '-' chars.
* [Diag-Experimental-Formatting] Change color of indicator arrow for non-ASCII anchored messages
* [Diag-experimental-formatting] Make tests less sensitive to line numbering
* [Diag-Experimental-Formatting] Update tests to allow windows path separators
* [Diag-Experimental-Formatting] Bug fixes for the integrated REPL
Move the global PersistentParserState from
the CompilerInstance to the source file that code
completion is operating on, only hooking up the
state when it's needed. This will help make it
easier to requestify source file parsing.
LLJIT is a simple LLVM IR JIT. Its interface is similar to MCJIT, but its
implementation is based on LLVM's newer ORC APIs. This initial patch does not
make use of any of LLJIT/ORC's advanced features, but will provide better
diagnostics when JIT'd code fails to link. Once LLJIT has proven usable in
this basic configuration we can start experimenting with more advanced
features, including lazy compilation.
We were previously doing this for the REPL, but
not for swift-ide-test. Move the assignment into
the frontend to make sure its always applied, and
inline `createREPLFile` while we're here.
Instead of interleaving typechecking and parsing
for SIL files, first parse the file for Swift
decls by skipping over any intermixed SIL decls.
Then we can perform type checking, and finally SIL
parsing where we now skip over Swift decls.
This is an intermediate step to requestifying the
parsing of a source file for its Swift decls.
The REPL was using the CompilerInstance to stash this parameter, then it would immediately move it into IRGen. Drop the setter and pass this data directly.
Some versions of libedit may have histedit.h but not the Unicode
functions. Explicitly check for the Unicode functions in the found
libedit to ensure the check is accurate.
I considered making this a component of the LibEdit package in our find
module, but CMake's documentation [1] says "Packages that find multiple
semi-independent parts (like bundles of libraries) should search for the
components...", and the "multiple semi-independent parts" definitely
isn't the case here; we're just interested in determining if the found
library supports a particular feature.
[1] https://cmake.org/cmake/help/v3.16/manual/cmake-developer.7.html#find-modules
The current FOUND_VAR for FindLibEdit is libedit_FOUND but wasn't set by
find_package_handle_standard_args. However this isn't valid for the
package name.
The argument for FOUND_VAR is "libedit_FOUND", but only
"LibEdit_FOUND" and "LIBEDIT_FOUND" are valid names.
This fixes all the variables set by FindLibEdit to match the desired
naming scheme.
Thanks to Jonas for fixing the variable names!
Use the FindLibEdit.cmake module from LLDB to properly control where
the libedit libraries are searched for and linked from as well as where
the headers come from. This uses the standard mechanisms which allows
users to control where libedit is pulled from (which is important for
cross-compilation).
This second version is more aggressive about pruning the libedit
handling. The Ubuntu 14.04 version of libedit does not have
`histedit.h`, and the intent is to rely on that to determine if we have
unicode support or not.
This allows us use an OptionSet parameter for
the request (as currently we can't directly use it
as a parameter due to not having an == definition
for it). It also allows us to regain default
arguments for the source loc and flag parameters.
Lazy parsing for the members of nominal types and extensions depends
only on information already present in
`IterableDeclContext`. Eliminate the use of PersistentParserState as
an intermediary and have the member-parsing request construct a new
`Parser` instance itself to handle parsing. Make this possible even
for ill-formed nominal types/extensions to simplify the code path.
Eliminate `LazyMemberParser` and all of its uses, because it was only
present for lazy member parsing, which no longer needs it.
Note that in all cases it was either nullptr or ctx.getLazyResolver().
While passing in nullptr might appear at first glance to mean something
("don't type check anything"), in practice we would check for a nullptr
value and pull out ctx.getLazyResolver() instead. Furthermore, with
the lazy resolver going away (at least for resolveDeclSignature() calls),
it won't make sense to do that anymore anyway.
The library does not have the lib prefix in Windows, so the immediate
mode was not finding the file. This was making the new tests in
tests/Driver/options.swift fail on Windows. The tests pass after this
change.
Notice that it seems to load the host standard library, so restricting
the change to Windows seems to be OK and should not affect
cross-compilation. Windows was already hardcoding ".dll" as the library
extension, disregarding the target, anyway.
- Check the target triple at runtime to decide whether to use the fallback.
- Change isInResourceDir to actually check the resource dir.
- Use ArrayRef<std::string> instead of std::vector<std::string>.