UnconditionalAvailabilityKind => PlatformAgnosticAvailabilityKind
::UnavailableInCurrentSwift => ::SwiftVersionSpecific
Plus a couple related method renamings. Prep work for SR-2709.
[SourceKit] Indentation: when the indented line starts with open brace and the
line before starts with a leading declaration keywords, we never add
indentation level on the brace. rdar://28049927
`InParam` was not used at all.
`StopAtTypeAttributes`
As far as I understand, this option *was* merely for improving diagnostic QoI
for declarations like:
func foo(@typeattr Arg) {}
to fix-it to:
func foo(_: @typeattr Arg) {}
But, this causes the very loudy diagnostics for misplaced type attributes.
For example, on:
func foo(@convention(block) x: () -> CInt) {}
test.swift:1:10: error: expected parameter name followed by ':'
test.swift:1:10: error: expected ',' separator
test.swift:1:10: error: expected ')' in parameter
test.swift:1:9: note: to match this opening '('
test.swift:1:10: error: consecutive statements on a line must be separated by ';'
test.swift:1:11: error: attribute can only be applied to types, not declarations
test.swift:1:21: error: expected declaration
test.swift:1:44: error: statement cannot begin with a closure expression
test.swift:1:44: note: explicitly discard the result of the closure by assigning to '_'
test.swift:1:44: error: braced block of statements is an unused closure
test.swift:1:6: error: expected '{' in body of function declaration
test.swift:1:44: error: expression resolves to an unused function
Now, we emit more accurate diagnostic:
test.swift:1:11: error: attribute can only be applied to types, not declarations
func foo(@convention(block) x: () -> CInt) {}
^
Note that This causes small regression in diagnostics for bare type parameter
like `func foo(@convention(c) () -> CInt) {}`:
Before:
test.swift:1:10: error: unnamed parameters must be written with the empty name '_'
func foo(@convention(block) () -> CInt) {}
^
_:
Now:
test.swift:1:11: error: attribute can only be applied to types, not declarations
func foo(@convention(block) () -> CInt) {}
^
test.swift:1:29: error: unnamed parameters must be written with the empty name '_'
func foo(@convention(block) () -> CInt) {}
^
_:
By consuming parens.
As for type attributes, handle `@unknownAttribute(Arg) -> Ret` case.
Improves diagnostic QoI. For example, on:
func foo(x: @unknown(x) Int) {}
Before:
test.swift:1:14: error: unknown attribute 'unknown'
test.swift:1:25: error: expected ',' separator
test.swift:1:25: error: unnamed parameters must be written with the empty name '_'
test.swift:1:22: error: use of undeclared type 'x'
Now, we just emit the first one:
test.swift:1:14: error: unknown attribute 'unknown'
func foo(x: @unknown(x) Int) {}
^
`@foo=bar` style attributes are no longer supported anyway.
So as ',' separated attribute list.
In `canParseTypeTupleBody()`, `canParseType()` can more accurately consume
type attributes.
In `isStartOfGetSetAccessor`, we can trivially inline the functionality.
Use tok::NUM_TOKENS instead. tok::unknown can easily appear in source code.
For instance `skipUntil(tok::eof)` did not work as expected, because that was
`skipUntil(tok::eof, tok::unknown)` hence does stop at error tokens such as
`0xG` (invalid hex number literal).
Revert 2abc92bbb5, since that was
accidental side-effect of 45118037cc.
Forward references are not allowed actually.
The scope map relies fairly deeply on having reasonable source ranges
for AST nodes. Fix the construction and query of source ranges in a
few places throughout the parser and AST to provide stronger
invariants.
We were optimizing away unused pattern binding initializer contexts in
both the parser and in semantic analysis, which led to a
somewhat-unpredictable set of DeclContexts in the AST. Normalize
everything by always creating these contexts.
* [Parser] Preserve empty getter functions to make sure indentation inside its body still works. rdar://28049927
* Using the consistent identifier even though they are identical.
* If "required" or "convenience" is specified, emit only initializers
* If "final" or "open" is specified, don't emit initializers or typealias
* If "typealias" is specified, emit only associated type implementation
* Emit "override" or "required" modifier for initializers
* Emit access modifier for initializers
* Emit designated initializers even if "override" is specified
* Don't emit inheritance clause for associated type implentation
When replace something with a punctuator, we often prefer adding spaces around it.
For instance,
func foo(): bar {}
// fix it
func foo() -> bar {}
In this case we want to add a space before '->', but not after that.
With this change, we can simply `fixItReplace(ColonLoc, " -> ")`.
`fixItReplace()` automatically adjust the spaces around it.
And improve the error message for non-empty braces; if we're going to
ignore the contents, we should at least point you in the right
direction for Swift 3.
rdar://problem/27576922
One minor revision: this lifts the proposed restriction against
overriding a non-open method with an open one. On reflection,
that was inconsistent with the existing rule permitting non-public
methods to be overridden with public ones. The restriction on
subclassing a non-open class with an open class remains, and is
in fact consistent with the existing access rule.
What I've implemented here deviates from the current proposal text
in the following ways:
- I had to introduce a FunctionArrowPrecedence to capture the parsing
of -> in expression contexts.
- I found it convenient to continue to model the assignment property
explicitly.
- The comparison and casting operators have historically been
non-associative; I have chosen to preserve that, since I don't
think this proposal intended to change it.
- This uses the precedence group names and higherThan/lowerThan
as agreed in discussion.
and provide a fix-it to move it to the new location as referenced
in SE-0081.
Fix up a few stray places in the standard library that is still using
the old syntax.
Update any ./test files that aren't expecting the new warning/fix-it
in -verify mode.
While investigating what I thought was a new crash due to this new
diagnostic, I discovered two sources of quite a few compiler crashers
related to unterminated generic parameter lists, where the right
angle bracket source location was getting unconditionally set to
the current token, even though it wasn't actually a '>'.
It looks like migration fixits are done, and this doesn't
expose any new bugs that were not possible before, because
you could already define typealiases inside protocol
extensions.
To prevent some compiler_crasher regressions, add a simple
circularity-breaking hack. I'll need to do a sweep to clean
these up some day soon.
'fileprivate' is considered a broader level of access than 'private',
but for now both of them are still available to the entire file. This
is intended as a migration aid.
One interesting fallout of the "access scope" model described in
758cf64 is that something declared 'private' at file scope is actually
treated as 'fileprivate' for diagnostic purposes. This is something
we can fix later, once the full model is in place. (It's not really
/wrong/ in that they have identical behavior, but diagnostics still
shouldn't refer to a type explicitly declared 'private' as
'fileprivate'.)
As a note, ValueDecl::getEffectiveAccess will always return 'FilePrivate'
rather than 'Private'; for purposes of optimization and code generation,
we should never try to distinguish these two cases.
This should have essentially no effect on code that's /not/ using
'fileprivate' other than altered diagnostics.
Progress on SE-0025 ('fileprivate' and 'private')
- Any is made into a keyword which is always resolved into a TypeExpr,
allowing the removal of the type system code to find TheAnyType before
an unconstrained lookup.
- Types called `Any` can be declared, they are looked up as any other
identifier is
- Renaming/redefining behaviour of source loc methods on
ProtocolCompositionTypeRepr. Added a createEmptyComposition static
method too.
- Code highlighting treats Any as a type
- simplifyTypeExpr also does not rely on source to get operator name.
- Any is now handled properly in canParseType() which was causing
generic param lists containing ‘Any’ to fail
- The import objc id as Any work has been relying on getting a decl for
the Any type. I fix up the clang importer to use Context.TheAnyType
(instead of getAnyDecl()->getDeclaredType()). When importing the id
typedef, we create a typealias to Any and declare it unavaliable.
Also adds:
- Any is caught before doing an unconstrained lookup, and the
protocol<> type is emitted
- composition expressions can be handled by
`PreCheckExpression::simplifyTypeExpr` to so you can do lookups like (P
& Q).self
- Fixits corrected & new tests added
- Typeref lowering cases should have been optional
- This fixes a failing test case.
This commit defines the ‘Any’ keyword, implements parsing for composing
types with an infix ‘&’, and provides a fixit to convert ‘protocol<>’
- Updated tests & stdlib for new composition syntax
- Provide errors when compositions used in inheritance.
Any is treated as a contextual keyword. The name ‘Any’
is used emit the empty composition type. We have to
stop user declaring top level types spelled ‘Any’ too.
Allow 'static' (or, in classes, final 'class') operators to be
declared within types and extensions thereof. Within protocols,
require operators to be marked 'static'. Use a warning with a Fix-It
to stage this in, so we don't break the world's code.
Protocol conformance checking already seems to work, so add some tests
for that. Update a pile of tests and the standard library to include
the required 'static' keywords.
There is an amusing name-mangling change here. Global operators were
getting marked as 'static' (for silly reasons), so their mangled names
had the 'Z' modifier for static methods, even though this doesn't make
sense. Now, operators within types and extensions need to be 'static'
as written.
change includes both the necessary protocol updates and the deprecation
warnings
suitable for migration. A future patch will remove the renamings and
make this
a hard error.
Right now 'fileprivate' is parsed as an alias for 'private' (or
perhaps vice versa, since the semantics of 'private' haven't changed
yet). This allows us to migrate code to 'fileprivate' without waiting
for the full implementation.
We'd really like to say that private decls can't affect other files,
but we don't have enough information at parse-time:
- Private members of non-private classes still show up in vtables,
which affects subclasses and callers in other files.
- Private stored properties of non-private structs change the
layout of the struct.
- Private types may be used in private stored properties, affecting
the layout of the containing struct.
- Private decls of /any kind/ can be used as the initial value of a
stored property without an explicit type.
private class Evil {
class func defaultAlignment() -> Alignment { return .evil }
}
public struct Character {
// Inferred type here!
private var alignment = Evil.defaultAlignment()
}
To be safe and correct, go back to only ignoring method bodies.
https://bugs.swift.org/browse/SR-1030
Previously getInterfaceType() would punt to getType() if no
interface type was set. This patch changes getInterfaceType()
to assert if no interface type is set, and updates various
places to set the interface type explicitly.
This brings us a step closer to removing PolymorphicFunctionType.
known as #sourceLocation. #setline was an intermediate but never endorsed state.
Upgrade the migration diagnostics for SE-0066 and SE-0049 to be errors instead of warnings.