Enable qualified declaration names in `@derivative` attribute, just like
`@transpose` attribute.
`DerivativeAttr` now stores a base type `TypeRepr *`, which is non-null for
parsed attributes that reference a qualified original declaration.
Add `TypeResolutionFlags::AllowModule` flag to enable module lookup via
`TypeChecker::lookupMember` given a `ModuleType`.
Add tests for type-qualified and module-qualified declaration names.
Resolves TF-1058.
* WIP implementation
* Cleanup implementation
* Install backedge rather than storing array reference
* Add diagnostics
* Add missing parameter to ResultFinderForTypeContext constructor
* Fix tests for correct fix-it language
* Change to solution without backedge, change lookup behavior
* Improve diagnostics for weak captures and captures under different names
* Remove ghosts of implementations past
* Address review comments
* Reorder member variable initialization
* Fix typos
* Exclude value types from explicit self requirements
* Add tests
* Add implementation for AST lookup
* Add tests
* Begin addressing review comments
* Re-enable AST scope lookup
* Add fixme
* Pull fix-its into a separate function
* Remove capturedSelfContext tracking from type property initializers
* Add const specifiers to arguments
* Address review comments
* Fix string literals
* Refactor implicit self diagnostics
* Add comment
* Remove trailing whitespace
* Add tests for capture list across multiple lines
* Add additional test
* Fix typo
* Remove use of ?: to fix linux build
* Remove second use of ?:
* Rework logic for finding nested self contexts
- Introduce ide::CompletionInstance to manage CompilerInstance
- `CompletionInstance` vends the cached CompilerInstance when:
-- The compiler arguments (i.e. CompilerInvocation) has has not changed
-- The primary file is the same
-- The completion happens inside function bodies in both previous and
current completion
-- The interface hash of the primary file has not changed
- Otherwise, it vends a fresh CompilerInstance and cache it for the next
completion
rdar://problem/20787086
The `@transpose(of:)` attribute registers a function as a transpose of another
function. This patch adds the `@transpose(of:)` attribute definition, syntax,
parsing, and printing.
Resolves TF-827.
Todos:
- Type-checking (TF-830, TF-1060).
- Enable serialization (TF-838).
- Use module-qualified names instead of custom qualified name syntax/parsing
(TF-1066).
* diagnostic when a closure parameter is declared with type sugar
* Use a test that was already commmited for SR-11724
i
* Use isa<T> instead of asking for the kind directly
* Fix nit: Remove a whitespace
This type wraps a DeclName, indicating that it is a reference to a declaration that exists somewhere else and it requires slightly “fuzzy” comparison (i.e. if it’s not compound, only the base names should be compared). DeclName::matchesRef() and MemberLookupTable::find() both now take a DeclNameRef instead of a DeclName.
This commit temporarily allows implicit conversion from DeclName; I’ll flip the switch on that in a later commit.
Replaces `ComponentIdentTypeRepr::getIdentifier()` and `getIdLoc()` with `getNameRef()` and `getNameLoc()`, which use `DeclName` and `DeclNameRef` respectively.
State the previously unstated nested type requirement that CodingKeys adds to the witness requirements of a given type. The goal is to make this member cheap to synthesize, and independent of the expensive protocol conformance checks required to append it to the member list.
Further, this makes a clean conceptual separation between what I'm calling "nested type requirements" and actual type and value requirements.
With luck, we'll never have to use this attribute anywhere else.
The `@derivative(of:)` attribute registers a function as a derivative of another
function. This patch adds the `@derivative(of:)` attribute definition, syntax,
parsing, and printing.
Resolves TF-826.
Todos:
- Type-checking (TF-829).
- Serialization (TF-837).
Since we only call one parsing function (i.e. parseAbstructFunctionBody,
parseDecl, or parseStmtOrExpr), the parser stops at the end of the node.
It's not necessary to limit the Lexer to set an ArtificialEOF.
To minimize the parsing range, modify the Parser to *not* parse the body
if the completion happens in the signature.
We need this attribute to teach compiler to use a different name from the current
module name when generating runtime symbol names for a declaration. This is to serve
the workflow of refactoring a symbol from one library to another without breaking the existing
ABI.
This patch focuses on parsing and serializing the attribute, so @_originallyDefinedIn
will show up in AST, swiftinterface files and swiftmodule files.
rdar://55268186
- Stop using skipBracedBlock() in parseDeclPrecedenceGroup(),
skipUntilDeclRBrace() is better at this context.
- Disable 'SyntaxParsingContext' inside skipBracedBlock()
- Removed unsound recovery logic in consumeAbstractFunctionBody(). This
doesn't match with the parser bahavior in the delayed parsing.
- Expose 'skipBracedBlock()' as a Parser instance method so it's usable
from other files.
- Use general `Parser::isIdentifier(Token, StringRef)` function.
- Remove specialized `isWRTIdentifier`, `isJVPIdentifier`, `isVJPIdentifier`
functions from `Parser`.
- Clarify doc comments and parameter nullability for attribute printing code:
`getDifferentiationParametersClauseString`.
- Minor formatting and naming updates.
Name binding can trigger swiftinterface compilation, which creates
a new ASTContext and runs a compilation job. If the compiler was
run with -stats-output-dir, this could trigger an assertion because
SharedTimer is not re-entrant.
Fix this by replacing all direct uses of SharedTimer in the frontend
with FrontendStatsTracer. SharedTimer is still used to _implement_
FrontendStatsTracer, however we can collapse some of the layers in
the implementation later. Many of the usages should also become
redundant over time once more code is converted over to requests.
Frontend outputs source-as-compiled, and source-ranges file with function body ranges and ranges that were unparsed in secondaries.
Driver computes diffs for each source file. If diffs are in function bodies, only recompiles that one file. Else if diffs are in what another file did not parse, then the other file need not be rebuilt.