wrapped value placeholder in an init(wrappedValue:) call that was previously
injected as an OpaqueValueExpr. This commit also restores the old design of
OpaqueValueExpr.
Start fixing SR-12526: `@derivative` attribute cross-module deserialization
crash. Remove original `AbstractFunctionDecl *` from `DerivativeAttr` and store
`DeclID` instead, mimicking `DynamicReplacementAttr`.
Like switch cases, a catch clause may now include a comma-
separated list of patterns. The body will be executed if any
one of those patterns is matched.
This patch replaces `CatchStmt` with `CaseStmt` as the children
of `DoCatchStmt` in the AST. This necessitates a number of changes
throughout the compiler, including:
- Parser & libsyntax support for the new syntax and AST structure
- Typechecking of multi-pattern catches, including those which
contain bindings.
- SILGen support
- Code completion updates
- Profiler updates
- Name lookup changes
If an import-as-member property was used in a key path, we'd try to identify the component by its
foreign-to-native thunk, which isn't normally generated (causing a crash from the missing symbol)
and wouldn't be globally unique even if it were. Fixes rdar://problem/60519829.
* Add all [differential operators](https://github.com/apple/swift/blob/master/docs/DifferentiableProgramming.md#list-of-differential-operators).
* Add `withoutDerivative(at:)`, used for efficiently stopping the derivative propagation at a value and causing the derivative at the value to be zero.
* Add utility `differentiableFunction(from:)`, used for creating a `@differentiable` function from an original function and a derivative function.
Mostly work done by @marcrasi and @dan-zheng.
Partially resolves TF-843.
TODO:
* Add `AnyDerivative`.
* Add `Array.differentiableMap(_:)` and `differentiableReduce(_:_:)`.
* [Typechecker] Allow enum cases without payload to witness a static get-only property with Self type protocol requirement
* [SIL] Add support for payload cases as well
* [SILGen] Clean up comment
* [Typechecker] Re-enable some previously disabled witness matching code
Also properly handle the matching in some cases
* [Test] Update typechecker tests with payload enum test cases
* [Test] Update SILGen test
* [SIL] Add two FIXME's to address soon
* [SIL] Emit the enum case constructor unconditionally when an enum case is used as a witness
Also, tweak SILDeclRef::getLinkage to update the 'limit' to 'OnDemand' if we have an enum declaration
* [SILGen] Properly handle a enum witness in addMethodImplementation
Also remove a FIXME and code added to workaround the original bug
* [TBDGen] Handle enum case witness
* [Typechecker] Fix conflicts
* [Test] Fix tests
* [AST] Fix indentation in diagnostics def file
Add the `@differentiable` function conversion pipeline:
- New expressions that convert between `@differentiable`,
`@differentiable(linear)`, and non-`@differentiable` functions:
- `DifferentiableFunction`
- `LinearFunction`
- `DifferentiableFunctionExtractOriginal`
- `LinearFunctionExtractOriginal`
- `LinearToDifferentiableFunction`
- All the AST handling (e.g. printing) necessary for those expressions.
- SILGen for those expressions.
- CSApply code that inserts these expressions to implicitly convert between
the various function types.
- Sema tests for the implicit conversions.
- SILGen tests for the SILGen of these expressions.
Resolves TF-833.
A request is intended to be a pure function of its inputs. That function could, in theory, fail. In practice, there were basically no requests taking advantage of this ability - the few that were using it to explicitly detect cycles can just return reasonable defaults instead of forwarding the error on up the stack.
This is because cycles are checked by *the Evaluator*, and are unwound by the Evaluator.
Therefore, restore the idea that the evaluate functions are themselves pure, but keep the idea that *evaluation* of those requests may fail. This model enables the best of both worlds: we not only keep the evaluator flexible enough to handle future use cases like cancellation and diagnostic invalidation, but also request-based dependencies using the values computed at the evaluation points. These aforementioned use cases would use the llvm::Expected interface and the regular evaluation-point interface respectively.
Generate `differentiable_function` and `differentiable_function_extract` in
derivative witness table/vtable thunks.
`differentiation_function` is later canonicalized by the differentiation
transform.
Add SIL FileCheck tests.
Define type signatures and SILGen for the following builtins:
```
/// Applies the {jvp|vjp} of `f` to `arg1`, ..., `argN`.
func applyDerivative_arityN_{jvp|vjp}(f, arg1, ..., argN) -> jvp/vjp return type
/// Applies the transpose of `f` to `arg`.
func applyTranspose_arityN(f, arg) -> transpose return type
/// Makes a differentiable function from the given `original`, `jvp`, and
/// `vjp` functions.
func differentiableFunction_arityN(original, jvp, vjp)
/// Makes a linear function from the given `original` and `transpose` functions.
func linearFunction_arityN(original, transpose)
```
Add SILGen FileCheck tests for all builtins.
Delete `@differentiable` attribute `jvp:` and `vjp:` arguments for derivative
registration. `@derivative` attribute is now the canonical way to register
derivatives.
Resolves TF-1001.
`@differentiable` attribute on protocol requirements and non-final class
members now produces derivative function entries in witness tables and vtables.
This enables `witness_method` and `class_method` differentiation.
Existing type-checking rules:
- Witness declarations of `@differentiable` protocol requirements must have a
`@differentiable` attribute with the same configuration (or a configuration
with superset parameter indices).
- Witness table derivative function entries are SILGen'd for `@differentiable`
witness declarations.
- Class vtable derivative function entries are SILGen'd for non-final
`@differentiable` class members.
- These derivative entries can be overridden or inherited, just like other
vtable entries.
Resolves TF-1212.
Generate SIL differentiability witnesses from `@differentiable` and
`@derivative` declaration attributes.
Add SILGen utilities for:
- Emiting differentiability witnesses.
- Creating derivative function thunks, which are used as entries in
differentiability witnesses.
When users register a custom derivative function, it is necessary to create a
thunk with the expected derivative type computed from the original function's
type. This is important for consistent typing and consistent differentiability
witness entry mangling.
See `SILGenModule::getOrCreateCustomDerivativeThunk` documentation for details.
Resolves TF-1138.
GetterSetterComponent::hasPropertyWrapper() now checks for more
stuff than just whether there's a property wrapper or not.
It's therefore renamed to canRewriteSetAsPropertyWrapperInit().
When assigning to a wrapped variable in 'init()', if the property wrapper's
'wrappedValue:' parameter is an escaping autoclosure, the initializer and
setter have incompatible types -- the setter takes a value, and initializer
takes a closure returning that value.
An assign_by_wrapper with incompatible types causes SIL verification to fail.
This commit makes the SIL not use assign_by_wrapper in such cases, and use the
setter directly, resulting in a definitive initialization (DI) error instead.
struct S {
@Lazy var n: Int // Lazy.init(wrappedValue: @autoclosure ... )
init() {
n = 1 // error: 'self' used before all stored properties are initialized
}
}
If the 'wrappedValue:' parameter is an escaping autoclosure, and a
struct property is marked with that property wrapper, the memberwise
initializer of the struct is now synthesized with an escaping
autoclosure for that property.
Now that curry thunks are gone, we can do a bit more refactoring
to guarantee that an ApplyExpr always has the *exact* number of
call sites expected.
Extra call sites are handled by emitting the innermost ApplyExpr
as an indirect callee, eliminating a special code path.
Now that CSApply transforms partial applications into closures,
we never see AST with partially-applied method calls. So all the
machinery for emitting curry thunks is now gone.
This means that it can only have a guaranteed object as an operandand that we
validate that all uses of the result address of open_existential_box occur only
within the lifetime of said object's borrow scope.
This fixes an immediate bug with subst-to-orig conversion of
parameter functions that I'm surprised isn't otherwise tested.
More importantly, it preserves valuable information that should
let us handle a much wider variety of variant representations
that aren't necessarily expressed in the AbstractionPattern.
* Use in_guaranteed for let captures
With this all let values will be captured with in_guaranteed convention
by the closure. Following are the main changes :
SILGen changes:
- A new CaptureKind::Immutable is introduced, to capture let values as in_guaranteed.
- SILGen of in_guaranteed capture had to be fixed.
in_guaranteed captures as per convention are consumed by the closure. And so SILGen should not generate a destroy_addr for an in_guaranteed capture.
But LetValueInitialization can push Dealloc and Release states of the captured arg in the Cleanup stack, and there is no way to access the CleanupHandle and disable the emission of destroy_addr while emitting the captures in SILGenFunction::emitCaptures.
So we now create, temporary allocation of the in_guaranteed capture iduring SILGenFunction::emitCaptures without emitting destroy_addr for it.
SILOptimizer changes:
- Handle in_guaranteed in CopyForwarding.
- Adjust dealloc_stack of in_guaranteed capture to occur after destroy_addr for on_stack closures in ClosureLifetimeFixup.
IRGen changes :
- Since HeapLayout can be non-fixed now, make sure emitSize is used conditionally
- Don't consider ClassPointerSource kind parameter type for fulfillments while generating code for partial apply forwarder.
The TypeMetadata of ClassPointSource kind sources are not populated in HeapLayout's NecessaryBindings. If we have a generic parameter on the HeapLayout which can be fulfilled by a ClassPointerSource, its TypeMetaData will not be found while constructing the dtor function of the HeapLayout.
So it is important to skip considering sources of ClassPointerSource kind, so that TypeMetadata of a dependent generic parameters gets populated in HeapLayout's NecessaryBindings.