For every global pattern binding, emit a lazy initializer token and function that initializes the global variables in that binding. For each of those vars, create an accessor that Builtin.once's the lazy initializer before producing the address. Hide this all behind a switch till the surrounding serialization and IRGen infrastructure catches up.
Swift SVN r10511
of having to lower to an RValue.
This is valuable because we can often emit an expression to a
desired abstraction level more efficiently than just emitting
it to minimal abstraction and then generalizing.
Swift SVN r10455
<rdar://problem/14835992> happens because, when we emitted a chain of checked casts for 'is' patterns in a 'switch', we would emit abstraction changes for each individual cast that required them. This is both redundant and makes cleaning up messier, because the number of branches with different stack heights increases. Instead, let's emit one abstraction change up front for all of the casts. No functionality change yet, but this is a step on the way to fixing <rdar://problem/14835992>.
Swift SVN r9921
We already know how to call external functions in SILGen, why reimplement all that in IRGen? Instead of representing the thunk operation as a SIL instruction, let's just emit the thunk using existing SILGen machinery. Fixes <rdar://problem/14097136>.
Swift SVN r9576
Rather than wrapping a DeclRefExpr in a SpecializeExpr for a reference
to a generic free function, just use the substitutions stored within
the DeclRefEXpr. Such DeclRefExprs will always have a concrete
type. One tiny nail in the SpecializeExpr coffin.
Swift SVN r9539
Instead of trying to anticipate every combination of source and destination [unowned]/[weak] qualifiers, just back off on the copy_addr peephole and let the old path handle these cases as before.
Swift SVN r9030
If we're using emitExprInto to emit a LoadExpr, we can handle that by emitting a copy_addr from the underlying lvalue to the initialization instead of building and storing the rvalue, which plays better with the direction we're taking for value semantics optimizations.
This is currently guarded behind a flag -enable-silgen-lvalue-peepholes because it introduces a miscompile in the stdlib that crashes some tests; requires further investigation before making live.
Swift SVN r9027
Rewrite ForEachStmt SILGen to use the Optional intrinsics with the Generator.next method to iterate through sequences, and kill off the Enumerator path in Sema. Cut over 'EnumeratorType.Element' requirements to instead require 'GeneratorType.Element' in the stdlib.
There are a couple of bugs remaining that need follow-up work. There appears to be a bug in nested enum layout (e.g. T??) that's causing test/Interpreter/enum to break; I'll investigate and fix. There's also a lingering type-checker bug with inferred associated types that causes them to fail requirement checks <rdar://problem/15172101>, which I think Doug needs to look into.
Swift SVN r9017
As with the monadic '?', we treat any left-bound '!' as a postfix
operator. Currently, it extracts the value of its optional
subexpression, failing at run-time if the optional is empty.
Swift SVN r8948
Make ApplyInst and PartialApplyInst directly take substitutions for generic functions instead of trying to stage out substitutions separately. The legacy reasons for doing this are gone.
Swift SVN r8747
These are the terms sent out in the proposal last week and described in
StoredAndComputedVariables.rst.
variable
anything declared with 'var'
member variable
a variable inside a nominal type (may be an instance variable or not)
property
another term for "member variable"
computed variable
a variable with a custom getter or setter
stored variable
a variable with backing storage; any non-computed variable
These terms pre-exist in SIL and IRGen, so I only attempted to solidify
their definitions. Other than the use of "field" for "tuple element",
none of these should be exposed to users.
field
a tuple element, or
the underlying storage for a stored variable in a struct or class
physical
describes an entity whose value can be accessed directly
logical
describes an entity whose value must be accessed through some accessor
Swift SVN r8698
Replace the existing suite of checked cast instructions with:
- unconditional_checked_cast, which performs an unconditional cast that aborts on failure (like the former downcast unconditional); and
- checked_cast_br, which performs a conditional pass and branches on whether the cast succeeds, passing the result to the true branch as an argument.
Both instructions take a CheckedCastKind that discriminates the different casting modes formerly discriminated by instruction type. This eliminates a source of null references in SIL and eliminates null SIL addresses completely.
Swift SVN r8696
Now that all [objc] constructors have a suitable "init" selector, emit
an Objective-C thunk for the initializing constructor (not the
allocating constructor!) with that selector, and make sure it shows up
in the Objective-C metadata.
With this, we can write a Swift constructor "constructor()" to
override "-init"; see the change to ListMaker that exercises this.
Joe or John: I'd love a review of these.
Swift SVN r8373
AnyFunctionRef is a universal function reference that can wrap all AST nodes
that represent functions and exposes a common interface to them. Use it in two
places in SIL where CapturingExpr was used previously.
AnyFunctionRef allows further simplifications in other places, but these will
be done separately.
Swift SVN r8239
If a struct has [unowned] fields and an implicit elementwise constructor, then the constructor receives a strong reference argument corresponding to the unowned field, and we have to introduce that conversion as part of the construction.
Swift SVN r8207
If an OpaqueValueExpr is only used in one place, mark it as such. SIL
generation will then elide the retain/release pair associated with
each reference to the opaque value, instead consuming the value at the
point of use.
Swift SVN r8072
Introduce a proper cleanup for the Optional<T> value created by
non-forced dynamic member lookups.
Additionally, properly manage each reference to an OpaqueValue within
an expression, and release the value when the RAII object goes out of
scope. This is the conservative approach to be optimized soon.
Swift SVN r8071
The dynamic_method_br instruction branches depending on whether a
particular object can accept a given message, as determined at
runtime. If the object can accept the message, it branches to the
first basic block, providing the uncurried method as the BB
argument. If the object cannot accept the message, it branches to the
second basic block. Either way, the result is packaged up into an
optional type and passed along to the continuation block, which
provides the optional result.
Note that this instruction is restricted to lookup of Objective-C
methods.
Documentation and IR generation (via -respondsToSelector) to
follow. Review greatly appreciated!
Swift SVN r8065
move the corresponding functionality into SILGen.
I've switched around 'assign' so that it's no longer a
semantic assignment --- that is, so that it expects a properly
lowered value as its operand, not an r-value of the semantic
type. This actually simplifies quite a lot of code and removes
some ugly special-casing from MemoryPromotion.
Swift SVN r7942