In SILGenApply, if we have a partially-applied invocation of a class method, make a call to a currying thunk instead of trying to perform dynamic dispatch in-line. Emit the class dynamic dispatch instead as part of the currying thunk itself, and close over the dynamic method pointer as part of the curried closure context.
Swift SVN r8076
If an OpaqueValueExpr is only used in one place, mark it as such. SIL
generation will then elide the retain/release pair associated with
each reference to the opaque value, instead consuming the value at the
point of use.
Swift SVN r8072
Introduce a proper cleanup for the Optional<T> value created by
non-forced dynamic member lookups.
Additionally, properly manage each reference to an OpaqueValue within
an expression, and release the value when the RAII object goes out of
scope. This is the conservative approach to be optimized soon.
Swift SVN r8071
The dynamic_method_br instruction branches depending on whether a
particular object can accept a given message, as determined at
runtime. If the object can accept the message, it branches to the
first basic block, providing the uncurried method as the BB
argument. If the object cannot accept the message, it branches to the
second basic block. Either way, the result is packaged up into an
optional type and passed along to the continuation block, which
provides the optional result.
Note that this instruction is restricted to lookup of Objective-C
methods.
Documentation and IR generation (via -respondsToSelector) to
follow. Review greatly appreciated!
Swift SVN r8065
SILGen learned how to forward archetypes for generic class constructors, and we can reuse this knowledge to finally implement curry thunks for generic functions.
Generic methods still pose a problem because we can't return a value of polymorphic type, so we'd need to hoist polymorphic parameters to the outermost uncurry level during SIL function type canonicalization even at uncurry level zero.
Swift SVN r8054
These helper expressions will eventually be used by SILGen to help
package up the optional values. I expect that we'll eventually have
library builtins for this, so consider this a stop-gap until those
appear.
As part of this, make OpaqueValueExpr a bit more usable: it can now
persist in the AST as a placeholder, but its uses must be within AST
subtrees of some specific introduction point (similarly to how Clang's
OpaqueValueExpr works).
Swift SVN r8051
global variables used by functions in the capture list as well.
SILGen and other things that don't care about these (i.e., all
current current clients) filter the list to get what they want.
This is needed for future definite init improvements, and unblocked
by Doug's patch in r8039 (thanks! :)
No functionality change.
Swift SVN r8045
Tuple exploding happens during RValue construction, so changed the constructor and addElement() method to take the location parameter. The imploding happens on RValue::forwardAsSingleValue and RValue::getAsSingleValue(). Make sure the right SIL locations are passed to all of these
Also, added some missing locations in pattern matching code.
Swift SVN r7916
MemberRefExpr now uses ConcreteDeclRef to refer to its member, which
includes the substitutions and obviates the need for
GenericMemberRefExpr.
Swift SVN r7842
Auto generated location should not be a separate location kind since
we might have different kinds of auto generated locations (ex: cleanup,
return). Even though the kind info might not be necessary for diagnostics or
debug info, it allows us to better use type system, for example, only pass
CleanupLocation where expected.
Swift SVN r7816
I've decided to keep only the location of the scope AST node that corresponds to the cleanup. (Currently, there is no user that needs the originator expression, which caused the cleanup. So keeping things simple.)
Added the cleanup location to the Scope and JumpDest classes, which gets assigned on construction of those. The Scope's and JumpDest locations are used when we emit the cleanup instructions.
We now give better location info for 2 existing tests for definitive initialization.
(+ Rather sparse testing of all this.)
Swift SVN r7764
When performing member lookup into an existential that involves the
DynamicLookup protocol, look into all classes and protocols for that
member. References to anything found via this lookup mechanism are
returned as instances of Optional.
This introduces the basic lookup mechanics into the type
checker. There are still numerous issues to work through:
- Subscripting isn't supported yet
- There's no SILGen or IRGen support
- The ASTs probably aren't good enough for the above anyway
- References to generics will be broken
- Ambiguity resolution or non-resolution
Thanks to Jordan for the patch wiring up DynamicLookup.
Swift SVN r7689
We mark the branch instructions leading into single epilog code with ReturnLocation/ImplicitReturnLocation. If SIL Gen simplifies the code and merges the code representing the return into the epilog block, the terminator of the epilog block (the ReturnInst) will have the return location info on it. Otherwise, the ReturnInst has the RegularLocation, which represents the enclosing FunctionExpr or Constructor/Destructor Decls.
(I've discussed dropping the optimization from SILGen, and keeping the epilog code canonical, with Adrian; but he said that there might not be any wins in doing so, so keeping it for now.)
Added AutoGeneratedLocation to represent segments of code generated by SILGen. This will be used for thunks and other auto-generated segments.
Swift SVN r7634
This was not likely an error-free change. Where you see problems
please correct them. This went through a fairly tedious audit
before committing, but comments might have been changed incorrectly,
not changed at all, etc.
Swift SVN r7631
This is was a very mechanical patch where I basically first renamed SILNodes.def
and then just kept fixing things until everything compiled, so even though it is
large patch I feel ok(ish) with committing it.
If anyone has any concerns/etc, please email me and I will revert in 1 second.
Swift SVN r7604
We had a weird (and problematic for me) situation before where
tuple initializations would not recursively finalize their tuple
elements when they were finalized. Making them do so runs afoul
of the poorly named Initialization::getSubInitializations(x,y,z)
method, which had nothing to do with the
Initialization::getSubInitializations() method. Rename the former
to "getSubInitializationsForTuple" to make it more clear what is
going on, and make it handle the finalization of the SingleElement
initialization when it explodes it.
No functionality change, this unblocks some cases definite init was
tripping over.
Swift SVN r7600
Generate union constructors as SIL functions using the new 'union' instruction. Change UnionTypeInfo::emitInjectionFunctionBody into UnionTypeInfo::emitInjection, which emits the union value to an explosion rather than emitting the scalar return directly, and use it to implement IRGen lowering of the 'union' instruction.
This breaks a few serialization tests because of mangler bugs handling generic unions, which I'll fix next.
Swift SVN r7559
This is a baby step toward eliminating GenericParamList from
PolymorphicFunctionType, fixing up the easy callers. No functionality
change.
Swift SVN r7370