With constraint propagation enabled, we go down a different path in the
solver that results in a type with ParenType wrapped around it. Normally
in diagnostic formatting we would strip these off, but in explicitly
forming a string for a fixit, we need to do it ourself. Hits in
test/Parse/try.swift with constraint propagation enabled.
TODO:
- Select the KeyPath subclass corresponding to the write capability of the key path components
- Figure out an issue with unresolved solutions being chosen with contextually-typed keypaths
- Diagnostic QoI
When in Swift 3 compatibility mode without
`-warn-swift3-objc-inference`, warn on the *uses* of declarations that
depend on the Objective-C runtime that became `@objc` due to the
deprecated inference rule. This far more directly captures important
uses of the deprecated Objective-C entrypoints. We diagnose:
* `#selector` expressions that refer to one of these `@objc` members
* `#keyPath` expressions that refer to one of these `@objc` members
* Dynamic lookup (i.e., member access via `AnyObject`) that refers to
one of these `@objc` members.
While in the constraint system, the delegation is modeled as
returning an instance of the derived class, in the AST we type
the reference as returning an instance of the base class, and
insert a downcast, because in SILGen we're calling the base
class initializer which is typed as returning the base class.
This bit of fixup logic wasn't happening if the base class was
generic, and so we were not inserting the cast, which would
crash in SILGen with an assert.
Fixes <rdar://problem/31000248>.
A lot of files transitively include Expr.h, because it was
included from SILInstruction.h, SILLocation.h and SILDeclRef.h.
However in reality most of these files don't do anything
with Exprs, especially not anything in IRGen or the SILOptimizer.
Now we're down to 171 files in the frontend which depend on
Expr.h, which is still a lot but much better than before.
This lets you match `case .foo` when `foo` resolves to any static member, instead of only a `case`, albeit without the exhaustiveness checking and subpattern capabilities of proper cases. While we're here, adjust the type system we set up for unresolved patterns embedded in expressions so that we give better signal in the error messages too.
When this was migrated over to the awesome new special representation
of type(of:) the argument coercion didn’t come with it. The missing
load expression caused any l-value run through type(of:) to crash in the
verifier.
If a convenience initializer in a subclass delegated to an inherited initializer from its base, we would end up type-checking the reference to the base class constructor as returning the base type, leading to type mismatches in the result AST and downstream crashes. We can wrap up the synthesized OtherConstructorRefExpr in a CovariantFunctionConversionExpr, which will trick the type checker into propagating the covariant result that gets rebound to `self` on return, avoiding this problem. (For now, I'm avoiding making the constructor decl formally have a Self return type, since that exposes a bunch of downstream breakage in code paths that only expect FuncDecls to be covariant, and also affects the mangling of constructors, causing a bunch of test case thrash we really don't want to inflict on the 3.1 branch.)
A new SubstitutionMap::getProtocolSubstitutions() method handles
the case where we construct a trivial SubstitutionMap to replace
the protocol Self type with a concrete type.
When substituting one opened existential archetype for another,
use the form of Type::subst() that takes two callbacks instead of
building a SubstitutionMap. SubstitutionMaps are intended to be
used with keys that either come from a GenericSignature or a
GenericEnvironment, so using them to replace opened archetypes
doesn't fit the conceptual model we're going for.
Another pile of changes to use a side map for types in the constraint
solver and only write them directly into expressions once we have a
known good solution that we want to apply.
Still incomplete, we continue to write the types into expressions along
the way at the moment.
First, add some new utility methods to create SubstitutionMaps:
- GenericSignature::getSubstitutionMap() -- provides a new
way to directly build a SubstitutionMap. It takes a
TypeSubstitutionFn and LookupConformanceFn. This is
equivalent to first calling getSubstitutions() with the two
functions to create an ArrayRef<Substitution>, followed by
the old form of getSubstitutionMap() on the result.
- TypeBase::getContextSubstitutionMap() -- replacement for
getContextSubstitutions(), returning a SubstitutionMap.
- TypeBase::getMemberSubstitutionMap() -- replacement for
getMemberSubstitutions(), returning a SubstitutionMap.
With these in place, almost all existing uses of subst() taking
a ModuleDecl can now use the new form taking a SubstitutionMap
instead. The few remaining cases are explicitly written to use a
TypeSubstitutionFn and LookupConformanceFn.
Constraint generation for interpolated string literals was
meticulously producing a constraint system that included all of the
generated calls to init(stringInterpolationSegment:). While accurate,
this is completely unnecessary (because the
ExpressibleByStringInterpolation protocol allows *anything* to be
interpolated) and leads to large, intertwined constraint systems
where:
(1) There are two additional type variables per string interpolation
segment, and
(2) Those type variables form a bridge between the string
interpolation's type variable and the type variables of each string
interpolation segment, and
(3) init(stringInterpolationSegment:) tends to be overloaded (4
overloads, down from 17 due to
29353013c0)
which left each string interpolation as a large connected component
with big disjunctions.
Drop the calls to init(stringInterpolationSegment:) from the
constraint system. This eliminates two type
variables per segment (due to (1) going away), and breaks the bridge
described in (2), so that each string interpolation segment is
treated as an separate connected component and, therefore, will be
solved independently. The actual resolution of
init(stringInterpolationSegment:) overloads is pushed to the
constraint application phase, where we are only dealing with concrete
types and *much* smaller constraint systems.
Fixes rdar://problem/29389887 more thoroughly.
When I refactored the handling of bridging conversions (e.g.,
valueType as? NSClassType), I broke the path that performed a bridging
conversion followed by a conversion to an existential, e.g.,
"some-bridged-value-type as CVarArg". Reinstate such use cases.
Fixes rdar://problem/30195862.
Without this, CSGen/CSSimplify and CSApply may have differing
opinions about whether e.g. a let property is settable, which
can lead to invalid ASTs.
Arguably, a better fix would be to remove the dependency on the
exact nested DC. For example, we could treat lets as settable
in all contexts and then just complain later about invalid
attempts to set them. Or we could change CSApply to directly
use the information it already has about how an l-value is used,
rather than trying to figure out whether it *might* be getting set.
But somehow, tracking a new piece of information through the
entire constraint system seems to be the more minimal change.
Fixes rdar://29810997.
Value type initializers must initialize stored properties directly
if they do not delegate to another initializer via self.init().
Since direct stored property access is not permitted for resilient
value types from outside their resilience domain, this means that
such initializers are prohibited in two cases:
- If the initializer is defined in an extension from outside the
value type's resilience domain
- If the initializer is public and @_inlineable, since it might get
inlined outside the value type's resilience domain
Right now, such initializers cannot *assign* to self either;
I filed <https://bugs.swift.org/browse/SR-3686> to track the issue.
ConstraintSystem::simplifyType() replaced types with their fixed types
from the global map.
Solution::simplifyType() replaced types with their fixed types from the
current bindings.
There were some minor differences between the two, and some dead code.
Constraint application had a "peephole" to try to generate a series of
optional-injection expressions when performing an optional-to-optional
coercion such as "Int??!" to "Int?????!". However, the computation
incorrectly selecting between implicitly-unwrapped optional and
optional types for intermediate steps, leading to an AST verification
failure. Clean up the implementation to use
TypeBase::lookThroughAllAnyOptionalTypes() rather than hand-rolled,
more-lossy versions and use the actual optional types in the "to" type
along each step, which has the side effect of maintaining type sugar.
In Swift 4 mode, no longer consider e.g. 'nsNumber as Int' or 'nsValue as NSRange' to be valid coercions. This would break compatibility with Swift 3, so in Swift 3 mode, accept the coercion, but *also* accept a checked cast without a warning, and raise a migration warning about the unchecked coercion.