Aim of this new diagnostic abstraction is to encapsulate each
individual failure into its own class with some shared base.
Good example of this - diagnostics related to generic requirement
failures, where each kind (conformance, same-type etc.) has
some specific logic e.g. diagnostic message but the all share
the same traits like affected declaration/requirement.
Since information comes from `Solution` anyway, it's good to have
that logic localized, but it's also useful for diagnostics based on
fixes attached to solutions.
Any solution which doesn't require source changes should be considered
better than any other solution which does.
Otherwise solutions with fixes are always considered better than
solutions with unavailable overloads, which isn't correct especially
considering that different types of errors are now diagnosed via
forming solutions with fixes.
If fixes are allowed let solver record missing protocol conformance
requirements and assume that `conformsTo` constraint is successfully
solved, this helps to diagnose such errors without involving
heavy-weight expression based diagnostics.
Resolves: rdar://problem/40537858
While inferring avoid associating type variables with closure
parameters, use cache instead and only set types when everything
is properly type-checked, this avoids multiple problems one of
them - leaking type variables outside of constraint system they
belong to.
This makes sure that the diagnostics appear in the stable order
which is closer to what users would expect e.g. evaluation
order, otherwise, because disjunctions are currently attempted
based on their size, ordering of error messages produced by
applying fixes is completely arbitrary.
Let the solver disregard missing argument labels and record correct
ones, so such problem could be diagnosed later on iff there were no
other more serious failures.
* Improve label mismatch callback:
- Split "missing label" callback into 3 - missing, extraneous, incorrect (with typo(s));
- Allow label callbacks to indicate if it's a fatal error or not;
* Improve matching of the variadic parameters;
* Improve matching of the parameters with defaults;
* Try to look for an argument with matching label before fallback to
forced claming (if allowed).
Treat non-optional generic parameters as being more specialized than
optional generic parameters, and penalize any solutions that involve
generic arguments that are themselves Optional.
By doing these things, we can remove the special-cased code for the
two overloads of '??' in the stdlib, instead treating the (T?, T)
overload as better than the (T?, T?) overload except where a user
actually passes an optionally-typed value as the second parameter.
Fixes: rdar://problem/19748710
to be stable.
We currently will stop visiting the elements of a disjunction under
certain circumstances once we have found a solution. The result we get
is inherently dependent on the order in which we determine to visit
the disjunctions themselves (in addition to the elements of the
disjunction).
This change makes the order in which we visit disjunctions
stable. Future commits will create a stable ordering for the elements
of disjunctions. Once we also have that stable ordering in place we
can in theory short circuit more often as part of changing the way in
which we decide what the "best" solution is to a system.
This results in an expression in
validation-test/stdlib/AnyHashable.swift.gyb no longer being able to
typecheck in a reasonable amount of time, so I had to tweak that
expression.
Instead of mixing flags between type-checker and constraint solver, let's
move the ones which are useful in constraint system there. Doing
so allows for `solveForExpression` to be moved from `TypeChecker` to
`ConstraintSystem` which consolidates solver logic.
It also allows to set these flags as part of constraint generation/solving,
which is sometimes important.
Replace the last (and most obscure) use of the poor “use ‘?’ or ‘!’” diagnostic with the
new, more explanatory version that provides separate notes with Fix-Its for coalescing or
force-unwrapping the value.
Finishes rdar://problem/42081852.
Introduce a new fix kind into the constraint solver to cover unwrapping the base
of a member access so we can refer to the a member of the unwrapped base.
Wire this fix kind to the just-added diagnostic that suggests either the
chaining ‘?’ or the force-unwrap ‘!’ via separate, descriptive Fix-Its.
Example:
error: value of optional type 'X?' must be unwrapped to refer to member 'f' of wrapped base type 'X'
let _: Int = x.f()
^
note: chain the optional using '?' to access member 'f' only for non-'nil' base values
let _: Int = x.f()
^
?
note: force-unwrap using '!' to abort execution if the optional value contains 'nil'
let _: Int = x.f()
^
!
Before this, we would sometimes get a Fix-It for just ‘?’ and sometimes get a Fix-It for the
coalescing ‘??’, neither of which is likely to be right.
More work on rdar://problem/42081852.
Revise the heuristic so that it does not differ between Swift
versions, and so that it is always based on the number of scopes we've
opened.
The memory threshold and (very long) timer are also still in place as
well.
This fixes a subtle issue where, during single-expression closure type inference, we would ask for the settability of local variables from the outer function's context, leading us to mistakenly consider them mutable inside single-expression closure contexts. DI would catch some but not all violations of the expected semantics here.
If the user specifies a memory threshold on the command-line, try to
honor that value and consider expressions too complex if we end up
allocating more memory than they specify.
Fixes rdar://problem/40952582 (aka https://bugs.swift.org/browse/SR-7525).
If solver encounters a typealias inside of constrainted extension
make sure to add its requirements to the constraint system, otherwise
it might produce invalid solutions.
Refactor the interface to return a bit vector. Along the way, fix up
the callers and remove some dead usages of the defaults information
that were copied and pasted around Sema.