Specifically, I split it into 3 initial categories: IR, Utils, Verifier. I just
did this quickly, we can always split it more later if we want.
I followed the model that we use in SILOptimizer: ./lib/SIL/CMakeLists.txt vends
a macro (sil_register_sources) to the sub-folders that register the sources of
the subdirectory with a global state variable that ./lib/SIL/CMakeLists.txt
defines. Then after including those subdirs, the parent cmake declares the SIL
library. So the output is the same, but we have the flexibility of having
subdirectories to categorize source files.
The directory currently seems to have a mix of
tests for import resolution and name lookup.
Therefore split it into two directories;
ImportResolution and NameLookup.
Currently `simplifyAppliedOverloads` depends on
the order in which constraints are simplified,
specifically that a lookup constraint for a
function gets simplified before the applicable
function constraint. This happens to work out
just fine today with the order in which we
re-activate constraints, but I'm planning on
changing that order.
This commit changes the logic such that it it's no
longer affected by the order in which constraints
are simplified. We'll now run it when either an
applicable function constraint is added, or a new
bind overload disjunction is added. This also
means we no longer need to run it potentially
multiple times when simplifying the applicable fn.
- In `simplifyConformsToConstraint`, pass the LHS
type regardless of whether it is a type variable.
- Add the `choiceImpact` onto the impact for
adding a stdlib conformance.
- Treat Any and AnyObject as standard library
types.
Previously we could skip default literal or
supertype bindings if we had already found a solution
with fixes, which could lead us to miss bindings
that produce better diagnostics.
Tweak the logic such that we continue exploring if
we're in diagnostic mode.
Resolves SR-12399.
* [Typechecker] Allow enum cases without payload to witness a static get-only property with Self type protocol requirement
* [SIL] Add support for payload cases as well
* [SILGen] Clean up comment
* [Typechecker] Re-enable some previously disabled witness matching code
Also properly handle the matching in some cases
* [Test] Update typechecker tests with payload enum test cases
* [Test] Update SILGen test
* [SIL] Add two FIXME's to address soon
* [SIL] Emit the enum case constructor unconditionally when an enum case is used as a witness
Also, tweak SILDeclRef::getLinkage to update the 'limit' to 'OnDemand' if we have an enum declaration
* [SILGen] Properly handle a enum witness in addMethodImplementation
Also remove a FIXME and code added to workaround the original bug
* [TBDGen] Handle enum case witness
* [Typechecker] Fix conflicts
* [Test] Fix tests
* [AST] Fix indentation in diagnostics def file
* [Diagnostics] Turn educational notes on-by-default
* [Diagnostics] Only include educational notes in printed output if -print-educational-notes is passed
* Make -print-educational-notes a driver option
* [Diagnostics] Issue a printed remark if educational notes are available, but disabled
* [docs] Update educational notes documentation and add a contributing guide
* [Diagnostics] Cleanup PrintingDiagnosticConsumer handling of edu notes
* Revert "[Diagnostics] Issue a printed remark if educational notes are available, but disabled"
For now, don't notify users if edu notes are available but disabled. This decision can be reevaluated later.
Add mangling scheme for `@differentiable` and `@differentiable(linear)` function
types. Mangling support is important for debug information, among other things.
Update docs and add tests.
Resolves TF-948.
The `@transpose` attribute registers a function as the transpose of another
function-like declaration: a `func`, `init`, `subscript`, or `var` computed
property declaration.
The `@transpose` attribute also has an optional `wrt:` clause specifying the
linearity parameters, i.e. the parameters that are transposed with respect to.
The linearity parameters must conform to the `Differentiable` protocol and
satisfy `Self == TangentVector`.
If the `wrt:` clause is unspecified, the linearity parameters are inferred to be
all parameters that conform to `Differentiable` and that satisfy
`Self == TangentVector`.
`@transpose` attribute type-checking verifies that the type of the transpose
function declaration is consistent with the type of the referenced original
declaration and the linearity parameters.
Resolves TF-830.
Switch the direct operator lookup logic over to
querying the SourceLookupCache, then switch the
main operator lookup logic over to calling the
direct lookup logic rather than querying the
operator maps on the SourceFile.
This then allows us to remove the SourceFile
operator maps, in addition to the logic from
NameBinding that populated them. This requires
redeclaration checking to be implemented
separately.
Finally, to compensate for the caching that the old
operator maps were providing for imported results,
turn the operator lookup requests into cached
requests.
Query the SourceLookupCache for the operator decls,
and use ModuleDecl::getOperatorDecls for both
frontend stats and to clean up some code
completion logic.
In addition, this commit switches getPrecedenceGroups
over to querying SourceLookupCache.
Serialize derivative function configurations per module.
`@differentiable` and `@derivative` attributes register derivatives for
`AbstractFunctionDecl`s for a particular "derivative function configuration":
parameter indices and dervative generic signature.
To find `@derivative` functions registered in other Swift modules, derivative
function configurations must be serialized per module. When configurations for
a `AbstractFunctionDecl` are requested, all configurations from imported
modules are deserialized. This module serialization technique has precedent: it
is used for protocol conformances (e.g. extension declarations for a nominal
type) and Obj-C members for a class type.
Add `AbstractFunctionDecl::getDerivativeFunctionConfigurations` entry point
for accessing derivative function configurations.
In the differentiation transform: use
`AbstractFunctionDecl::getDerivativeFunctionConfigurations` to implement
`findMinimalDerivativeConfiguration` for canonical derivative function
configuration lookup, replacing `getMinimalASTDifferentiableAttr`.
Resolves TF-1100.
Add `AdditiveArithmetic` derived conformances for structs and classes, gated by
the `-enable-experimental-differentiable-programming` flag.
Structs and classes whose stored properties all conform to `Differentiable` can
derive `Differentiable`:
- `associatedtype TangentVector: Differentiable & AdditiveArithmetic`
- Member `TangentVector` structs are synthesized whose stored properties are
all `var` stored properties that conform to `Differentiable` and that are
not `@noDerivative`.
- `mutating func move(along: TangentVector)`
The `@noDerivative` attribute may be declared on stored properties to opt out of
inclusion in synthesized `TangentVector` structs.
Some stored properties cannot be used in `TangentVector` struct synthesis and
are implicitly marked as `@noDerivative`, with a warning:
- `let` stored properties.
- These cannot be updated by `mutating func move(along: TangentVector)`.
- Non-`Differentiable`-conforming stored properties.
`@noDerivative` also implies `@_semantics("autodiff.nonvarying")`, which is
relevant for differentiable activity analysis.
Add type-checking and SILGen tests.
Resolves TF-845.