Extend NSNumber bridging to cover not only `Int`, `UInt`, `Double`, and `Bool`, but all of the standard types as well. Extend the `TypePreservingNSNumber` subclass to accommodate all of these types, so that we preserve type identity for `AnyHashable` and dynamic casting of Swift-bridged NSNumbers. If a pure Cocoa NSNumber is cast, just trust that the user knows what they're doing.
This XFAILs a couple of serialization tests that attempt to build the Foundation overlay, but which don't properly handle `gyb` files.
For every struct type for which the frameworks provides an NSValue category for boxing and unboxing values of that type, provide an _ObjectiveCBridgeable conformance in the Swift overlay that bridges that struct to NSValue, allowing the structs to be used naturally with id-as-Any APIs and Cocoa container classes. This is mostly a matter of gyb-ing out boilerplate using `NSValue.init(bytes:objCType:)` to construct the instance, `NSValue.objCType` to check its type when casting, and `NSValue.getValue(_:)` to extract the unboxed value, though there are a number of special snowflake cases that need special accommodation:
- To maintain proper layering, CoreGraphics structs need to be bridged in the Foundation overlay.
- AVFoundation provides the NSValue boxing categories for structs owned by CoreMedia, but it does so using its own internal subclasses of NSValue, and these subclasses do not interop properly with the standard `NSValue` subclasses instantiated by Foundation. To do the right thing, we therefore have to let AVFoundation provide the bridging implementation for the CoreMedia types, and we have to use its category methods to do so.
- SceneKit provides NSValue categories to box and unbox SCNVector3, SCNVector4, and SCNMatrix4; however, the methods it provides do so in an unusual way. SCNVector3 and SCNVector4 are packaged into `CGRect`s and then the CGRect is boxed using `valueWithCGRect:`. SCNMatrix4 is copied into a CATransform3D, which is then boxed using `valueWithCATransform3D:` from CoreAnimation. To be consistent with what SceneKit does, use its category methods for these types as well, and when casting, check the type against the type encoding SceneKit uses rather than the type encoding of the expected type.
[test] Add a timeout to runRaceTest(). Use it to limit test AtomicInt.swift.
This cuts AtomicInt.swift's execution time from several hours to
about ten minutes on slow hardware and slow build configurations.
From the Swift documentation:
"If you define an optional variable without providing a default value,
the variable is automatically set to nil for you."
Things like: PthreadBarriers.swift:114:50: error: cannot convert value of type 'UnsafeMutablePointer<pthread_mutex_t>' (aka 'UnsafeMutablePointer<OpaquePointer>') to expected argument type 'UnsafeMutablePointer<pthread_mutex_t?>' (aka 'UnsafeMutablePointer<Optional<OpaquePointer>>')
on barrier.pointee.mutex . I need to do more research to understand this
The new names are what people generally expect. The old names made more
sense in the old times when the 'Optional.None' case could not be
created with the 'nil' keyword.
SE-0032 did not propose a protocol entry point, only a protocol
extension.
Using a pure protocol extension is the right choice here because a
concrete sequence can't provide a more efficient implementation of this
method than the default one.
- If a parameter type is a sugared function type, mark the type
as non-escaping by default. Previously, we were only doing this
if the parameter type was written as a function type, with no
additional sugar.
This means in the following cases, the function parameter type
is now non-escaping:
func foo(f: ((Int) -> Void))
typealias Fn = (Int) -> Void
func foo(f: Fn)
- Also, allow @escaping to be used in the above cases:
func foo(f: @escaping ((Int) -> Void))
typealias Fn = (Int) -> Void
func foo(f: @escaping Fn)
- Diagnose usages of @escaping in inappropriate locations, instead
of just ignoring them.
It is unfortunate that sometimes we end up desugaring the typealias,
but currently there are other cases where this occurs too, such as
qualified lookpu of protocol typealiases with a concrete base
type, and generic type aliases. A more general representation for
sugared types (such as an AttributedType sugared type) would allow
us to solve this in a more satisfactory manner in the future.
However at the very least this patch factors out the common code
paths and adds comments, so it shouldn't be too bad going forward.
Note that this is a source-breaking change, both because @escaping
might need to be added to parameters with a sugared function type,
and @escaping might be removed if it appears somewhere where we
do not mark function types as non-escaping by default.
Implements part of SE-0110. Single argument in closures will not be accepted if
there exists explicit type with a number of arguments that's not 1.
```swift
let f: (Int, Int) -> Void = { x in } // this is now an error
```
Note there's a second part of SE-0110 which could be considered additive,
which says one must add an extra pair of parens to specify a single arugment
type that is a tuple:
```swift
let g ((Int, Int)) -> Void = { y in } // y should have type (Int, Int)
```
This patch does not implement that part.
Commit 93dfc166 "More reliably avoid running duplicate tests"
accidentally disabled too many tests. If one test file was testing
multiple collections, only the first one was tested, the rest were
skipped as duplicate tests.
Adds an explicit @escaping throughout the standard library, validation
test suite, and tests. This will be necessary as soon as noescape is
the default for closure parameters.
As of now:
* old APIs are just marked as `deprecated` not `unavaiable`. To make it
easier to co-operate with other toolchain repos.
* Value variant of API is implemented as public @private
`_ofInstance(_:)`.