This makes it more explicit what the install component of a target
library is if you don't see one (and its marked as IS_SDK_OVERLAY).
Explicit in this case makes more sense, as you don't have to rely on
knowledge of how `add_swift_target_library` is implemented to understand
what component is used to install the target.
There are situations where you want to build against a libc that is out
of tree or that is not the system libc (Or for cross build scenarios).
This is a change for passing the -sdk and include paths for things like
this.
Now that that's stabilized, we don't have to keep them in Swift 4 mode
any longer. (Arguably we don't need the CMake variable at all, but it
may be useful again in the future.)
rdar://problem/49040980
Magic symbols of the form $ld$install_name$os9.0$@rpath/libswiftCore.dylib tell the linker to use that install name when targeting that OS version. Use these symbols to specify an @rpath install name for all back-deployment libraries when targeting watchOS 2.0-5.1, iOS 7.0-12.1, and macOS 10.9-10.14.
rdar://problem/45027809
Old Swift and new Swift runtimes and overlays need to coexist in the same process. This means there must not be any classes which have the same ObjC runtime name in old and new, because the ObjC runtime doesn't like name collisions.
When possible without breaking source compatibility, classes were renamed in Swift, which results in a different ObjC name.
Public classes were renamed only on the ObjC side using the @_objcRuntimeName attribute.
This is similar to the work done in pull request #19295. That only renamed @objc classes. This renames all of the others, since even pure Swift classes still get an ObjC name.
rdar://problem/46646438
The SDK directory is now confusing as the Windows target also has a SDK
overlay. In order to make this more uniform, move the SDK directory to
Darwin which covers the fact that this covers the XNU family of OSes.
The Windows directory contains the SDK overlay for the Windows target.