These should hopefully all be uncontroversial, minimal changes to deal
with progressing the build to completion on OpenBSD or addressing minor
portability issues. This is not the full set of changes to get a
successful build; other portability issues will be addressed in future
commits.
Most of this is just adding the relevant clauses to the ifdefs, but of
note in this commit:
* StdlibUnittest.swift: the default conditional in _getOSVersion assumes
an Apple platform, therefore the explicit conditional and the relevant
enums need filling out. The default conditional should be #error, but
we'll fix this in a different commit.
* tgmath.swift.gyb: inexplicably, OpenBSD is missing just lgammal_r.
Tests are updated correspondingly.
* ThreadLocalStorage.h: we use the pthread implementation, so it
seems we should typedef __swift_thread_key_t as pthread_key_t.
However, that's also a tweak for another commit.
* Revert "Add availability information to the new Math function protocols (#24187)"
This reverts commit d2f695935f.
* Revert "SE-0246: Protocols and static functions (#23824)"
This reverts commit 57a4553832.
* Expected abi changes.
Seems that SwiftShims cannot import some system headers (checked by a
test in test/ParseableInterface/ModuleCache/SystemDependencies). So
adding <android/api-level.h> is not going to work.
The change reproduces the only piece necessary from the header, which is
interpreting that if no __ANDROID_API__ is defined, the level should be
the maximum allowed.
When the header was used in Android, the usage of __ANDROID_API__ was
not set if the compiler wasn't setting it externally. There was a check
for __ANDROID_API__, which defaulted to zero, and so it didn't pass. The
external function definition was not being done, but in C mode, it
didn't matter because implicit functions are allowed. That's not true in
C++ mode, which fails to compile any code that tries to include this
header.
The solution is including android/api-level.h which will define
__ANDROID_API__ to a very high value if it is not defined already (which
is the default behaviour in the NDK).
This implements the protocols and static functions proposed in SE-0246, plus some initial test coverage. It also has some rough accompanying cleanup of tgmath. It does not include the globals (on scalars or SIMD types) nor does it deprecate much in tgmath.h.
* Revert "Merge pull request #23791 from compnerd/you-know-nothing-clang"
This reverts commit 5150981150, reversing
changes made to 8fc305c03e.
* Revert "Merge pull request #23780 from compnerd/math-is-terrible"
This reverts commit 2d7fedd25f, reversing
changes made to 0205150b8f.
* Revert "Merge pull request #23140 from stephentyrone/mafs"
This reverts commit 777750dc51, reversing
changes made to 0c8920e747.
Since we use `_hypotf` on Windows rather than `__builtin_hyptof` due to
a bug in LLVM with the TLI lowering to the wrong builtin, include the
math header to get the proper declaration.
This commit implements SE-0246, by adding conformance to Real to the Float, CGFloat, Double, and Float80 types, implemented either in terms of the system's C math library, existing standard library functionality, or LLVM intrinsics. It includes basic test coverage for these new functions, and deprecates and obsoletes *some* existing functionality in the Platform overlay. We still need to make a decision about how to handle the remaining "tgmath" functions, because obsoleting them is technically a source-breaking change (if users have unqualified names like "exp(1)", it's fine, but it would break users who have used qualified names like "Darwin.exp(1)".)
Revert #20194, which seems to be more trouble than it's worth. Instead, move the functions that SwiftPrivate needs back into LibcShims.h/cpp as SPI.
rdar://problem/45817565
`malloc_usable_size` is provided on Android with API Level 17 or newer.
However, the signature between bionic and glibc is slightly different, with
android marking the parameter as `const`. This results in a type mismatch error
when building the standard library for android. Adjust it to match the target
system.
The functions in LibcShims are used externally, some directly and some through @inlineable functions. These are changed to SWIFT_RUNTIME_STDLIB_SPI to better match their actual usage. Their names are also changed to add "_swift" to the front to match our naming conventions.
Three functions from SwiftObject.mm are changed to SPI and get a _swift prefix.
A few other support functions are also changed to SPI. They already had a prefix and look like they were meant to be SPI anyway. It was just hard to notice any mixup when they were #defined to the same thing.
rdar://problem/35863717
android on AArch64 will alias `mode_t` to `__kernel_mode_t` which is aliased to
`unsigned int` rather than `unsigned short` like it is on the other targets.
Update the condition to reflect that.
SwiftPrivate/PRNG.swift:
- currently uses `theGlobalMT19937`;
- previously used `arc4random` (see #1939);
- is obsoleted by SE-0202: Random Unification.
* Use the `__has_include` and `GRND_RANDOM` macros
* Use `getentropy` instead of `getrandom`
* Use `std::min` from the <algorithm> header
* Move `#if` out of the `_stdlib_random` function
* Use `getrandom` with "/dev/urandom" fallback
* Use `#pragma comment` to import "Bcrypt.lib"
* <https://docs.microsoft.com/en-us/cpp/preprocessor/comment-c-cpp>
* <https://clang.llvm.org/docs/UsersManual.html#microsoft-extensions>
* Use "/dev/urandom" instead of `SecRandomCopyBytes`
* Use `swift::StaticMutex` for shared "/dev/urandom"
* Add `getrandom_available`; use `O_CLOEXEC` flag
Add platform impl docs
Update copyrights
Fix docs
Add _stdlib_random test
Update _stdlib_random test
Add missing &
Notice about _stdlib_random
Fix docs
Guard on upperBound = 0
Test full range of 8 bit integers
Remove some gyb
Clean up integerRangeTest
Remove FixedWidthInteger constraint
Use arc4random universally
Fix randomElement
Constrain shuffle to RandomAccessCollection
warning instead of error
Move Apple's implementation
Fix failing test on 32 bit systems
Initial random api
Use C syscall for I/O
1. Fixed an issue where integers would would result in an infinite loop if they were unsigned, or signed integers always returning negative numbers.
2. Fixed an issue with Bool initialization
Add shuffle functions
Add documentation to Random API
Fix a few typos within the documentation
Fixes more typos
Also states that the range for floating points is from 0 to 1 inclusive
Update API to reflect mailing list discussions
Remove unnecessary import
Make sure not to return upperBound on Range
Use SecRandomCopyBytes on older macOS
Update API to match mailing list discussion, add tests
Added pick(_:) to collection
Added random(in:using:) to Randomizable
Added tests
Fix typo in Randomizable documentation
Rename pick to sampling
Move sampling below random
Update docs
Use new Libc naming
Fix Random.swift with new Libc naming
Remove sampling
gybify signed integer creation
Make FloatingPoint.random exclusive
Refactor {Closed}Range.random
Fix FloatingPoint initialization
Precondition getting a random number from range
Fix some doc typos
Make .random a function
Update API to reflect discussion
Make .random a function
Remove .random() in favor of .random(in:) for all numeric types
Fix compile errors
Clean up _stdlib_random
Cleanup around API
Remove `.random()` requirement from `Collection`
Use generators
Optimize shuffle()
Thread safety for /dev/urandom
Remove {Closed}Range<BinaryFloatingPoint>.random()
Add Collection random requirement
Refactor _stdlib_random
Remove whitespace changes
Clean linux shim
Add shuffle and more tests
Provide finishing tests and suggestions
Remove refs to Countable ranges
Revert to checking if T is > UInt64
* Cleanup tgmath wrappers.
- Remove special-case gyb logic for lgamma on Darwin; the symbols we need are always present, even if not visible in the headers, so we only need a prototype.
- Add some deprecations for symbols that have direct stdlib analogues.
- Make some operations generic on [Binary]FloatingPoint, where they can map to the protocols instead of calling libm.
- Mark ldexp(Float/Double) renamed to scalbn; for binary formats these are identical functions, and we don't really want to use these names for hypothetical future Decimal support, as they're not Swifty.
* First pass at implementing support for mapping between long double and Float80.
* Only define CLongDouble on platforms where I know what it is.
* remove some hacks that are no longer necessary.
Rename the explicit `pthread` to `thread` to indicate that this is not
`pthread` specifically. This allows us to implement the TLS support for
Windows using Fibers.
Adds in Linux platform support for our pthread TLS. Replace usage of
PTHREAD_KEYS_MAX with a sentinel value, as it's tricky to define
cross-platform and was only lightly used inside sanity checks.
Introduce shims for using UBreakIterators from ICU. Also introduce
shims for using thread local storage via pthreads.
We will be relying on ICU and UBreakIterators for grapheme
breaking. But, UBreakIterators are very expensive to create,
especially for the way we do grapheme breaking, which is relatively
stateless. Thus, we will stash one or more into thread local storage
and reset it as needed.
Note: Currently, pthread_key_t is hard coded for a single platform
(Darwin), but I have a static_assert alongside directions on how to
adapt it to any future platforms who differ in key type.
Adds in Linux platform support for our pthread TLS. Replace usage of
PTHREAD_KEYS_MAX with a sentinel value, as it's tricky to define
cross-platform and was only lightly used inside sanity checks.
Introduce shims for using UBreakIterators from ICU. Also introduce
shims for using thread local storage via pthreads.
We will be relying on ICU and UBreakIterators for grapheme
breaking. But, UBreakIterators are very expensive to create,
especially for the way we do grapheme breaking, which is relatively
stateless. Thus, we will stash one or more into thread local storage
and reset it as needed.
Note: Currently, pthread_key_t is hard coded for a single platform
(Darwin), but I have a static_assert alongside directions on how to
adapt it to any future platforms who differ in key type.