Instead of always opening argument type represented by a collection
without type variables (to support subtyping when element is a labeled tuple),
let's try original type first and if that fails use a slower path with
indirection which attempts `array upcast`. Doing it this way helps to
propagate contextual information faster which fixes a performance regression.
Resolves: rdar://problem/54580247
It might be either impossible to infer the base because there is
no contextual information e.g. `_ = .foo` or there is something
else wrong in the expression which disconnects member reference
from its context.
Number the parameters starting at 1 in order to
match other diagnostics such as
diag::missing_argument_positional, and change the
text to make it explicit that we're referring to
the parameter position (rather than argument
position).
Correct a regression related to use of partially applied initializers,
which should be rejected only if it happens in a delegation chain.
Resolves: [SR-10837](https://bugs.swift.org/browse/SR-10837)
Resolves: rdar://problem/51442825
Originally `filterContextualMemberList` would only return a limited
set of closeness kinds `CC_GeneralMismatch`, `CC_Argument{Label, Count}Mismatch`,
and unavailable/inaccessible. At some point later it also started
matching almost everything besides `CC_SelfMismatch` and logic in
`visitUnresolvedMemberExpr` needs to get adjusted to account for that.
Resolves: rdar://problem/50668864
Situations like:
```swift
struct S {}
func foo(_ s: S.Type) {
_ = s()
}
```
Used to be diagnosed in solution application phase, which means that
solver was allowed to formed an incorrect solution.
When the compiler fails to find an overload with suitable parameter or return types, it often attaches a note listing the available overloads so that users can find the one they meant to use. The overloads are currently ordered in a way that depends on the order they were declared, so swift-evolve would sometimes cause tests involving these diagnostics to fail.
This change emits the list in a textually-sorted order instead. The names were already being sorted as they were inserted into a std::set, so this shouldn’t significantly slow down the diagnostic.
While trying to find a fixed type for a given type variable, check if
it has representative and if it does, reflect that in the returned type.
Resolves: rdar://problem/34670592
An early optimization in constraint generation attempted to simplify
type construction (e.g., X(...)) when the type in question has no
failable initializers. However, the optimization didn't appropriately
clear out the cached bit when new information became available (e.g.,
new conformances, new extensions), and didn't seem to help anything
performance-wise (type-checking times didn't increase at all when I
turned this off).
Fixes rdar://problem/30588177.
For example, if someone tries to use the newly-generic type Cache,
from Foundation:
var cache = Cache()
they'll now get a fix-it to substitute the default generic parameters:
var cache = Cache<AnyObject, AnyObject>()
The rules for choosing this placeholder type are based on constraints
and won't be right 100% of the time, but they should be reasonable.
(In particular, constraints on associated types are ignored.)
In cases where there's no one concrete type that will work, an Xcode-
style placeholder is inserted instead.
- An unconstrained generic parameter defaults to 'Any'.
- A superclass-constrained parameter defaults to that class,
e.g. 'UIView'.
- A parameter constrained to a single @objc protocol (or to AnyObject)
defaults to that protocol, e.g. 'NSCoding'.
- Anything else gets a placeholder using the generic parameter's name
and protocol composition syntax.
rdar://problem/27087345
along with recent policy changes:
- For expression types that are not specifically handled, make sure to
produce a general "unused value" warning, catching a bunch of unused
values in the testsuite.
- For unused operator results, diagnose them as uses of the operator
instead of "calls".
- For calls, mutter the type of the result for greater specificity.
- For initializers, mutter the type of the initialized value.
- Look through OpenExistentialExpr's so we can handle protocol member
references propertly.
- Look through several other expressions so we handle @discardableResult
better.
information about where the archetype was defined. Before:
t.swift:6:17: error: generic parameter 'T' could not be inferred
var a : Int = A.foo()
^
After:
t.swift:6:17: error: generic parameter 'T' could not be inferred
var a : Int = A.foo()
^
t.swift:2:8: note: 'T' declared as parameter to type 'A'
struct A<T> {
^
a constraint system in "allowFreeTypeVariables" mode. Previously, we
only allowed a few specific constraints, now we allow any relational and
member constraints. The later one is a big deal because it means that we
can allow ".Foo" expressions as ambiguous solutions, which CSDiags can
handle well.
This unblocks solving 23942743 and enables some minor improvements across
the board, including diagnosing things like this better:
Optional(.none) // now: generic parameter 'T' could not be inferred
That said, it also just permutes some non-awesome diagnostics.
There's still work left to do. In terms of next steps, there's still rdar://problem/22126141, which covers removing the 'workaround' overloads for print (that prevent bogus overload resolution failures), as well as providing a decent diagnostic when users invoke print with 'appendNewline'.
Swift SVN r30976
"unavoidable failure" path, along with Failure::DoesNotHaveNonMutatingMember and
just doing some basic disambiguation in CSDiags.
This provides some benefits:
- Allows us to plug in much more specific diagnostics for the existing "only has
mutating members" diagnostic, including producing notes for why the base expr
isn't mutable (see e.g. test/Sema/immutability.swift diffs).
- Corrects issues where we'd drop full decl name info for selector references.
- Wordsmiths diagnostics to not complain about "values of type Foo.Type" instead
complaining about "type Foo"
- Where before we would diagnose all failures with "has no member named", we now
distinguish between when there is no member, and when you can't use it. When you
can't use it, you get a vauge "cannot use it" diagnostic, but...
- This provides an infrastructure for diagnosing other kinds of problems (e.g.
trying to use a private member or a static member from an instance).
- Improves a number of cases where failed type member constraints would produce uglier
diagnostics than a different constraint failure would.
- Resolves a number of rdars, e.g. (and probably others):
<rdar://problem/20294245> QoI: Error message mentions value rather than key for subscript
Swift SVN r30715
detailed analysis of callees, which give us overload sets in more cases,
producing notes more consistently, and producing much better diagnostics
for the curried cases in test/Constraints/diagnostics.swift.
This also allows us to eliminate getCalleeName, which simplifies things
in CSDiags.
Swift SVN r30491
rationalizing how it handles members and curried functions, also paving
the way for future improvements. This implements the infrastructure but
keeps the functionality the same (the only functionality change is that
it works a bit better with vardecls of function type).
Swift SVN r30464
disjunction candidate set for a constraint that fails to match, not just
a single Bind within it. This eliminates the arbitrary nature of picking
one match, allowing us to diagnose the entire candidate set.
This exposed that we were trying to do argument matching of 'self' against
the partially curried arguments. Adjust the hack we have for that a bit to
make things work, but there are bigger problems for argument matching that
will need to be addressed.
Swift SVN r30064
facilities used by operators etc. This required a bunch of changes to make
the diagnostics changes strictly an improvement:
- Teach the new path about calls to TypeExprs.
- Teach evaluateCloseness some simple things about varargs.
- Make the generic diagnosis logic produce a better error when there is
exactly one match.
Overall, the resultant diagnostics are a step forward: we now produce candidate
set notes more uniformly, and the messages about some existing ones are
more specific. This is just another stepping stone towards progress though.
Swift SVN r30057
When a line begins with '.', it's almost always due to a method chain, not an attempt to start an expression with a contextual member lookup. This is a more principled grammar rule than the long tail of hacks we've been putting up to try to accommodate "builder pattern" usages. Fixes rdar://problem/20238557.
Swift SVN r29606
This makes it clearer that expressions like "foo.myType.init()" are creating new objects, instead of invoking a weird-looking method. The last part of rdar://problem/21375845.
Swift SVN r29375
If 'x.init' appears as a member reference other than 'self.init' or 'super.init' within an initializer, treat it as a regular static member lookup for 'init' members. This allows a more explicit syntax for dynamic initializations; 'self.someMetatype()' looks too much like it's invoking a method. It also allows for partial applications of initializers using 'someMetatype.init' (though this needs some SILGen fixes, coming up next). While we're in the neighborhood, do some other correctness and QoI fixes:
- Only lookup initializers as members of metatypes, not instances, and add a fixit (instead of crashing) to insert '.dynamicType' if the initializer is found on an instance.
- Make it so that constructing a class-constrained archetype type correctly requires a 'required' or protocol initializer.
- Warn on unused initializer results. This seems to me like just the right thing to do, but is also a small guard against the fact that 'self.init' is now valid in a static method, but produces a newly-constructed value instead of delegating initialization (and evaluating to void).
Swift SVN r29344
Most tests were using %swift or similar substitutions, which did not
include the target triple and SDK. The driver was defaulting to the
host OS. Thus, we could not run the tests when the standard library was
not built for OS X.
Swift SVN r24504
Previously the "as" keyword could either represent coercion or or forced
downcasting. This change separates the two notions. "as" now only means
type conversion, while the new "as!" operator is used to perform forced
downcasting. If a program uses "as" where "as!" is called for, we emit a
diagnostic and fixit.
Internally, this change removes the UnresolvedCheckedCastExpr class, in
favor of directly instantiating CoerceExpr when parsing the "as"
operator, and ForcedCheckedCastExpr when parsing the "as!" operator.
Swift SVN r24253
These changes make the following improvements to how we generate diagnostics for expression typecheck failure:
- Customizing a diagnostic for a specific expression kind is as easy as adding a new method to the FailureDiagnosis class,
and does not require intimate knowledge of the constraint solver’s inner workings.
- As part of this patch, I’ve introduced specialized diagnostics for call, binop, unop, subscript, assignment and inout
expressions, but we can go pretty far with this.
- This also opens up the possibility to customize diagnostics not just for the expression kind, but for the specific types
involved as well.
- For the purpose of presenting accurate type info, partially-specialized subexpressions are individually re-typechecked
free of any contextual types. This allows us to:
- Properly surface subexpression errors.
- Almost completely avoid any type variables in our diagnostics. In cases where they could not be eliminated, we now
substitute in "_".
- More accurately indicate the sources of errors.
- We do a much better job of diagnosing disjunction failures. (So no more nonsensical ‘UInt8’ error messages.)
- We now present reasonable error messages for overload resolution failures, informing the user of partially-matching
parameter lists when possible.
At the very least, these changes address the following bugs:
<rdar://problem/15863738> More information needed in type-checking error messages
<rdar://problem/16306600> QoI: passing a 'let' value as an inout results in an unfriendly diagnostic
<rdar://problem/16449805> Wrong error for struct-to-protocol downcast
<rdar://problem/16699932> improve type checker diagnostic when passing Double to function taking a Float
<rdar://problem/16707914> fatal error: Can't unwrap Optional.None…Optional.swift, line 75 running Master-Detail Swift app built from template
<rdar://problem/16785829> Inout parameter fixit
<rdar://problem/16900438> We shouldn't leak the internal type placeholder
<rdar://problem/16909379> confusing type check diagnostics
<rdar://problem/16951521> Extra arguments to functions result in an unhelpful error
<rdar://problem/16971025> Two Terrible Diagnostics
<rdar://problem/17007804> $T2 in compiler error string
<rdar://problem/17027483> Terrible diagnostic
<rdar://problem/17083239> Mysterious error using find() with Foundation types
<rdar://problem/17149771> Diagnostic for closure with no inferred return value leaks type variables
<rdar://problem/17212371> Swift poorly-worded error message when overload resolution fails on return type
<rdar://problem/17236976> QoI: Swift error for incorrectly typed parameter is confusing/misleading
<rdar://problem/17304200> Wrong error for non-self-conforming protocols
<rdar://problem/17321369> better error message for inout protocols
<rdar://problem/17539380> Swift error seems wrong
<rdar://problem/17559593> Bogus locationless "treating a forced downcast to 'NSData' as optional will never produce 'nil'" warning
<rdar://problem/17567973> 32-bit error message is really far from the mark: error: missing argument for parameter 'withFont' in call
<rdar://problem/17671058> Wrong error message: "Missing argument for parameter 'completion' in call"
<rdar://problem/17704609> Float is not convertible to UInt8
<rdar://problem/17705424> Poor error reporting for passing Doubles to NSColor: extra argument 'red' in call
<rdar://problem/17743603> Swift compiler gives misleading error message in "NSLayoutConstraint.constraintsWithVisualFormat("x", options: 123, metrics: nil, views: views)"
<rdar://problem/17784167> application of operator to generic type results in odd diagnostic
<rdar://problem/17801696> Awful diagnostic trying to construct an Int when .Int is around
<rdar://problem/17863882> cannot convert the expression's type '()' to type 'Seq'
<rdar://problem/17865869> "has different argument names" diagnostic when parameter defaulted-ness differs
<rdar://problem/17937593> Unclear error message for empty array literal without type context
<rdar://problem/17943023> QoI: compiler displays wrong error when a float is provided to a Int16 parameter in init method
<rdar://problem/17951148> Improve error messages for expressions inside if statements by pre-evaluating outside the 'if'
<rdar://problem/18057815> Unhelpful Swift error message
<rdar://problem/18077468> Incorrect argument label for insertSubview(...)
<rdar://problem/18079213> 'T1' is not identical to 'T2' lacks directionality
<rdar://problem/18086470> Confusing Swift error message: error: 'T' is not convertible to 'MirrorDisposition'
<rdar://problem/18098995> QoI: Unhelpful compiler error when leaving off an & on an inout parameter
<rdar://problem/18104379> Terrible error message
<rdar://problem/18121897> unexpected low-level error on assignment to immutable value through array writeback
<rdar://problem/18123596> unexpected error on self. capture inside class method
<rdar://problem/18152074> QoI: Improve diagnostic for type mismatch in dictionary subscripting
<rdar://problem/18242160> There could be a better error message when using [] instead of [:]
<rdar://problem/18242812> 6A1021a : Type variable leaked
<rdar://problem/18331819> Unclear error message when trying to set an element of an array constant (Swift)
<rdar://problem/18414834> Bad diagnostics example
<rdar://problem/18422468> Calculation of constant value yields unexplainable error
<rdar://problem/18427217> Misleading error message makes debugging difficult
<rdar://problem/18439742> Misleading error: "cannot invoke" mentions completely unrelated types as arguments
<rdar://problem/18535804> Wrong compiler error from swift compiler
<rdar://problem/18567914> Xcode 6.1. GM, Swift, assignment from Int64 to NSNumber. Warning shown as problem with UInt8
<rdar://problem/18784027> Negating Int? Yields Float
<rdar://problem/17691565> attempt to modify a 'let' variable with ++ results in typecheck error about @lvalue Float
<rdar://problem/17164001> "++" on let value could give a better error message
Swift SVN r23782
Start capitalizing on some of the new diagnostic machinery in a few different ways:
- When mining constraints for type information, utilize constraints "favored" by the overload resolution process.
- When printing type variables, if the variable was created by opening a literal expression, utilize the literal
default type or conformance if possible.
- Utilize syntactic information when crafting diagnostics:
- If the constraint miner can produce a better diagnostic than the recorded failure, diagnose via constraints.
- Factor in the expression kind when choosing which types to include in a diagnostic message.
- Start customizing diagnostics based on the amount of type data available.
What does all this mean?
- Fewer type variables leaking into diagnostic messages.
- Far better diagnostics for overload resolution failures. Specifically, we now print proper argument type data
for failed function calls.
- No more "'Foo' is not convertible to 'Foo'" error messages
- A greater emphasis on type data means less dependence on the ordering of failed constraints. This means fewer
inscrutable diagnostics complaining about 'UInt8' when all the constituent expressions are of type Float.
So we still have a ways to go, but these changes should greatly improve the number of head-scratchers served up
by the type checker.
These changes address the following radars:
rdar://problem/17618403
rdar://problem/17559042
rdar://problem/17007456
rdar://problem/17559042
rdar://problem/17590992
rdar://problem/17646988
rdar://problem/16979859
rdar://problem/16922560
rdar://problem/17144902
rdar://problem/16616948
rdar://problem/16756363
rdar://problem/16338509
Swift SVN r20927
There's a bit of a reshuffle of the ExplicitCastExpr subclasses:
- The existing ConditionalCheckedCastExpr expression node now represents
"as?".
- A new ForcedCheckedCastExpr node represents "as" when it is a
downcast.
- CoerceExpr represents "as" when it is a coercion.
- A new UnresolvedCheckedCastExpr node describes "as" before it has
been type-checked down to ForcedCheckedCastExpr or CoerceExpr. This
wasn't a strictly necessary change, but it helps us detangle what's
going on.
There are a few new diagnostics to help users avoid getting bitten by
as/as? mistakes:
- Custom errors when a forced downcast (as) is used as the operand
of postfix '!' or '?', with Fix-Its to remove the '!' or make the
downcast conditional (with as?), respectively.
- A warning when a forced downcast is injected into an optional,
with a suggestion to use a conditional downcast.
- A new error when the postfix '!' is used for a contextual
downcast, with a Fix-It to replace it with "as T" with the
contextual type T.
Lots of test updates, none of which felt like regressions. The new
tests are in test/expr/cast/optionals.swift.
Addresses <rdar://problem/17000058>
Swift SVN r18556
T(x)
where T is the name of a type. This syntax either coerces 'x' to the
type T or, failing that, enumerates the constructors of T and invokes
one of them.
Note that, syntactically, this coercion is syntactically identical to
a function application
f(x)
We distinguish these cases with a simple, syntax-based scheme: if the
'function' subexpression of the application can be trivially
determined to have metatype type, then we consider this a
construction. Otherwise, we assume that it's a function
application. This disallows some crazy coercions---e.g., those that
involve overloaded variables of metatype type---but should feel fairly
intuitive, and it keeps the constraint systems simpler.
Swift SVN r2802