Currently absence of `subtyping` is the only problem detected and diagnosed specifically
for `inout` parameters, but there could be type mismatches in `inout` positions as well
and we can use `argument-to-parameter mismatch fix to detect and diagnose them.
Number the parameters starting at 1 in order to
match other diagnostics such as
diag::missing_argument_positional, and change the
text to make it explicit that we're referring to
the parameter position (rather than argument
position).
Detect and diagnose contextual failures originating in an attempt
to convert `nil` to some other non-optional type e.g.
```swift
let _: Int = nil // can't initialize `Int` with `nil`
func foo() -> Int {
return nil // can't return `nil` from `foo`
}
_ = 1 + nil // there is no `+` overload which accepts `Int` and optional
```
Each candidate with incorrect labels (but everything else lined up)
gets a note on its declarationm which says what is expected and what
has been given.
If a syntax sugared type like Array had an unresolved type, it used to print as `[_]` in diagnostics, which could be confusing.
Instead, desugar these unresolved types before printing, so Array, for example, prints as `Array<_>`.
Currently this only applies to Array, Dictionary, and Optional.
Extend use of "instance member on type" fix to cover potentially
invalid partial applications, references to instance members on
metatypes, and remove related and now obsolete code from `CSDiag`.
Resolves: [SR-9415](https://bugs.swift.org/browse/SR-9415)
Introduce a fix to detect and diagnose situations when omitted
generic arguments couldn't be deduced by the solver based on
the enclosing context.
Example:
```swift
struct S<T> {
}
_ = S() // There is not enough context to deduce `T`
```
Resolves: rdar://problem/51203824
Detect and diagnose a contextual mismatch between expected
collection element type and the one provided (e.g. source
of the assignment or argument to a call) e.g.:
```swift
let _: [Int] = ["hello"]
func foo(_: [Int]) {}
foo(["hello"])
```
Escapingness is a property of the type of a value, not a property of a function
parameter. Having it as a separate parameter flag just meant one more piece of
state that could get out of sync and cause weird problems.
Instead, always look at the noescape bit in a function type as the canonical
source of truth.
This does mean that '@escaping' is now printed in a few diagnostics where it was
not printed before; we can investigate these as separate issues, but it is
correct to print it there because the function types in question are, in fact,
escaping.
Fixes <https://bugs.swift.org/browse/SR-10256>, <rdar://problem/49522774>.
The diagnostics for `variable_never_mutated` always suggests
changing `var` to `let`, which is misleading in case of
for-each loops where explicitly immutable context applies.
This patch adds some variety to the message to make it appropriate.
Resolves: SR-9732
When the compiler fails to find an overload with suitable parameter or return types, it often attaches a note listing the available overloads so that users can find the one they meant to use. The overloads are currently ordered in a way that depends on the order they were declared, so swift-evolve would sometimes cause tests involving these diagnostics to fail.
This change emits the list in a textually-sorted order instead. The names were already being sorted as they were inserted into a std::set, so this shouldn’t significantly slow down the diagnostic.
Detect and fix situations when (force) unwrap is used on
a non-optional type, this helps to diagnose invalid unwraps
precisely and provide fix-its.
Resolves: [SR-8977](https://bugs.swift.org/browse/SR-8977)
Resolves: rdar://problem/45218255
When converting an initialization to a coercion like:
```swift
_ = Float(90)
```
the outer coercion is given the startLoc and endLoc of the CallExpr in
source.
However, once we unwrap it and pull the implicit CallExpr to
`init(_builtinIntegerLiteral:)`, we lose the original source range.
Instead, leave the outer CoerceExpr, as it's ignored in SILGen anyway.
This makes diagnostics more verbose and accurate, because
it's possible to distinguish how many parameters there are
based on the message itself.
Also there are multiple diagnostic messages in a format of
`<descriptive-kind> <decl-name> ...` that get printed as
e.g. `subscript 'subscript'` if empty labels are omitted.
We were building the following constraint, where $member and
$input are type variables and 'result' is a concrete type:
- Conversion($member, $input -> result)
When $member was fixed to a function type of arbitrary
arity, this would simplify to a conversion between $member's
result type and 'result'.
Instead, express this using the newly-added FunctionResult
constraint:
- FunctionResult($member, $result)
- Conversion($result, result)
I wasn't expecting this to change diagnostics, but it looks
like it did; I'm not going to bother investigating why,
because Pavel is going to rewrite contextual diagnostics soon
anyway. All but one are clear improvements.
Fixes <rdar://41416346> and <rdar://41416647>, two cases where
diagnostics regressed from -swift-version 3 to -swift-version 4.
Avoid claiming un-labeled defaulted parameters
by out-of-order un-labeled arguments or parts
of variadic argument sequence, because that might
be incorrect.
The following example is supposed to type-check
correctly but without these changes produces
`missing argument for parameter #4 in call`
error, because `3` will be claimed as '_ b:':
```swift
func foo(_ a: Int, _ b: Int = 0, c: Int = 0, _ d: Int) {}
foo(1, c: 2, 3)
```
Resolves: rdar://problem/43525641