Detect and diagnose contextual failures originating in an attempt
to convert `nil` to some other non-optional type e.g.
```swift
let _: Int = nil // can't initialize `Int` with `nil`
func foo() -> Int {
return nil // can't return `nil` from `foo`
}
_ = 1 + nil // there is no `+` overload which accepts `Int` and optional
```
Detect and diagnose a contextual mismatch between expected
collection element type and the one provided (e.g. source
of the assignment or argument to a call) e.g.:
```swift
let _: [Int] = ["hello"]
func foo(_: [Int]) {}
foo(["hello"])
```
The type checker was performing local name lookup to find the Array and
Dictionary types to use as defaults for array and dictionary
literals. Make sure we only look for Swift.Array and Swift.Dictionary.
Fixes SR-9611 / rdar://problem/47085684.
Parsing collection literal expression used to take exponential time
depending on the nesting level of the first element.
Stop using 'parseList()' because using it complicates libSyntax parsing.
rdar://problem/45221238 / https://bugs.swift.org/browse/SR-9220
rdar://problem/38913395 / https://bugs.swift.org/browse/SR-7283
And provide better semantic background by surrounding 'nil' in ticks when it is referred to as a value
Added missing tests for certain cases involving nil capitalization
Also remove mention of the word “contextual” type from the diagnostic
that rewrites array literals into dictionary literals and scale back
the scope of the diagnostic. This method was catching and
mis-diagnosing too many errors that could better be handled by invalid
conversion diagnostics.
This commit also adds ArrayExpr and DictionaryExpr to the libSyntax nodes
family. Also, it refactors the original parser code for these two
expressions to better fit to the design of SyntaxParsingContext.
This commit has also fixed two crashers.
Before trying to replace every other "," with ":" to help convert
from array to dictionary, let's first check if it's appropriate e.g.
the number of commas matches the number of elements and number of
elements in the array is even which constitutes key/value pairs.
Resolves: SR-4952.
Previously we had more ad hoc logic that tried to decide if it was
worth desugaring a type based on its structure. Now we instead look
for a typealias that might actually benefit from desugaring, and if
we don't find one we won't show the 'aka' note.
The constraint generator's optimization to eagerly merge type
variables for different keys in a dictionary literal was too eager,
merging the type variables for (e.g.) a string literal and an integer
literal. This prevented us from properly inferring AnyHashable key
types in dictionary literals. Fixes the rest of rdar://problem/27661580.
The id-as-Any work regressed cases where Swift code could specify
heterogeneous collection literals, e.g.,
var states: [String: Any] = [
"California": [
"population": 37_000_000,
"cities": ["Los Angeles", "San Diego", "San Jose"],
],
"Oregon": [
"population": 4_000_000,
"cities": ["Portland", "Salem", "Eugene"],
]
]
Prior to this, the code worked (when Foundation was imported) because
we'd end up with literals of type [NSObject : AnyObject].
The new defaulting rule says that the element type of an array literal
and the key/value types of a dictionary literal can be defaulted if no
stronger type can be inferred. The default type is:
Any, for the element type of an array literal or the value type of a
dictionary literal, or
AnyHashable, for the key type of a dictionary literal.
The latter is intended to compose with implicit conversions to
AnyHashable, so the most-general inferred dictionary type is
[AnyHashable : Any] and will work for any plausible dictionary
literal.
To prevent this inference from diluting types too greatly, we don't
allow this inference in "top-level" expressions, e.g.,
let d = ["a" : 1, "b" : "two"]
will produce an error because it's a heterogeneous dictionary literal
at the top level. One should annotate this with, e.g.,
let d = ["a" : 1, "b" : "two"] as [String : Any]
However, we do permit heterogeneous collections in nested positions,
to support cases like the original motivating example.
Fixes rdar://problem/27661580.
change includes both the necessary protocol updates and the deprecation
warnings
suitable for migration. A future patch will remove the renamings and
make this
a hard error.
This includes a few changes:
- Enhance diagnoseGeneralConversionFailure to not ignore constraints that are fully solved by
CSDiags' heuristics.
- Enhance dictionary/array literals diagnostics to handle non-compliance to their literal
protocols with a specific and custom error message.
- Add specific QoI for turning accidental use of array literals in dictionary context into
the right dictionary syntax (with a fixit).
Swift SVN r31696
produce specific diagnostics about individual elements being incorrect instead of
complaining about the whole thing in aggregate.
This improves diagnostics immediately, but is also important to unblock future progress.
Swift SVN r31264
constraints of each kind, enhance FailureDiagnosis::diagnoseGeneralConversionFailure to
ignore conversion constraints that are either trivially resolvable (like Int conforming
to IntegerLiteralConvertible) or constraints that cannot be resolved because a type
variable is ambiguous.
This eliminates the last (known to me at least!) source of diagnostics that end up
complaining about obviously incorrect issues.
Swift SVN r31065
argument. For now we start with some of the most simple cases: single argument
calls. This dramatically improves the QoI for error messages in argument lists,
typically turning a error+note combo into a single specific error message.
Some minor improvements coming (and also generalizing this to n-ary calls), but it
is nice that all the infrastructure is starting to come together...
Swift SVN r30905
- Improve handling of if_expr in a couple of ways: teach constraint simplification
about IfThen/IfElse and teach CSDiags about the case when the cond expr doesn't match
BooleanType. This is rarely necessary, but CSDiags is all about cornercases, and this
does fix a problem in a testcase.
- Be a bit more specific about the constraint failure kind (e.g. say subtype) and when
we have a protocol conformance failure, emit a specific diagnostic about it, instead of
just saying that the types aren't convertible.
Swift SVN r30650
- Don't "aka" a Builtin.Int2123 type, it just makes a bad diagnostic worse.
- Split out the predicate that CSDiag uses to determine what a conversion
constraint is to a helper fn, and add subtype constraints to the mix.
- Move eraseTypeData into CSDiag (its own client) as a static function.
- Make eraseTypeData be a bit more careful about literals, in an attempt to
improve diagnostics when literals get re-type-checked. It turns out that
this still isn't enough as shown by the regression on the
decl/func/default-values.swift testcase, and the
Constraints/dictionary_literal.swift testcase where one bad diagnostic turns
into another different one, but I'll keep working on it.
- Beef up diagnoseContextualConversionError and the caller to it to be more
self contained and principled about the conversion constraints it digs out
of the system. This improves the diagnostics on a couple of cases.
Swift SVN r30642
Most tests were using %swift or similar substitutions, which did not
include the target triple and SDK. The driver was defaulting to the
host OS. Thus, we could not run the tests when the standard library was
not built for OS X.
Swift SVN r24504
These changes make the following improvements to how we generate diagnostics for expression typecheck failure:
- Customizing a diagnostic for a specific expression kind is as easy as adding a new method to the FailureDiagnosis class,
and does not require intimate knowledge of the constraint solver’s inner workings.
- As part of this patch, I’ve introduced specialized diagnostics for call, binop, unop, subscript, assignment and inout
expressions, but we can go pretty far with this.
- This also opens up the possibility to customize diagnostics not just for the expression kind, but for the specific types
involved as well.
- For the purpose of presenting accurate type info, partially-specialized subexpressions are individually re-typechecked
free of any contextual types. This allows us to:
- Properly surface subexpression errors.
- Almost completely avoid any type variables in our diagnostics. In cases where they could not be eliminated, we now
substitute in "_".
- More accurately indicate the sources of errors.
- We do a much better job of diagnosing disjunction failures. (So no more nonsensical ‘UInt8’ error messages.)
- We now present reasonable error messages for overload resolution failures, informing the user of partially-matching
parameter lists when possible.
At the very least, these changes address the following bugs:
<rdar://problem/15863738> More information needed in type-checking error messages
<rdar://problem/16306600> QoI: passing a 'let' value as an inout results in an unfriendly diagnostic
<rdar://problem/16449805> Wrong error for struct-to-protocol downcast
<rdar://problem/16699932> improve type checker diagnostic when passing Double to function taking a Float
<rdar://problem/16707914> fatal error: Can't unwrap Optional.None…Optional.swift, line 75 running Master-Detail Swift app built from template
<rdar://problem/16785829> Inout parameter fixit
<rdar://problem/16900438> We shouldn't leak the internal type placeholder
<rdar://problem/16909379> confusing type check diagnostics
<rdar://problem/16951521> Extra arguments to functions result in an unhelpful error
<rdar://problem/16971025> Two Terrible Diagnostics
<rdar://problem/17007804> $T2 in compiler error string
<rdar://problem/17027483> Terrible diagnostic
<rdar://problem/17083239> Mysterious error using find() with Foundation types
<rdar://problem/17149771> Diagnostic for closure with no inferred return value leaks type variables
<rdar://problem/17212371> Swift poorly-worded error message when overload resolution fails on return type
<rdar://problem/17236976> QoI: Swift error for incorrectly typed parameter is confusing/misleading
<rdar://problem/17304200> Wrong error for non-self-conforming protocols
<rdar://problem/17321369> better error message for inout protocols
<rdar://problem/17539380> Swift error seems wrong
<rdar://problem/17559593> Bogus locationless "treating a forced downcast to 'NSData' as optional will never produce 'nil'" warning
<rdar://problem/17567973> 32-bit error message is really far from the mark: error: missing argument for parameter 'withFont' in call
<rdar://problem/17671058> Wrong error message: "Missing argument for parameter 'completion' in call"
<rdar://problem/17704609> Float is not convertible to UInt8
<rdar://problem/17705424> Poor error reporting for passing Doubles to NSColor: extra argument 'red' in call
<rdar://problem/17743603> Swift compiler gives misleading error message in "NSLayoutConstraint.constraintsWithVisualFormat("x", options: 123, metrics: nil, views: views)"
<rdar://problem/17784167> application of operator to generic type results in odd diagnostic
<rdar://problem/17801696> Awful diagnostic trying to construct an Int when .Int is around
<rdar://problem/17863882> cannot convert the expression's type '()' to type 'Seq'
<rdar://problem/17865869> "has different argument names" diagnostic when parameter defaulted-ness differs
<rdar://problem/17937593> Unclear error message for empty array literal without type context
<rdar://problem/17943023> QoI: compiler displays wrong error when a float is provided to a Int16 parameter in init method
<rdar://problem/17951148> Improve error messages for expressions inside if statements by pre-evaluating outside the 'if'
<rdar://problem/18057815> Unhelpful Swift error message
<rdar://problem/18077468> Incorrect argument label for insertSubview(...)
<rdar://problem/18079213> 'T1' is not identical to 'T2' lacks directionality
<rdar://problem/18086470> Confusing Swift error message: error: 'T' is not convertible to 'MirrorDisposition'
<rdar://problem/18098995> QoI: Unhelpful compiler error when leaving off an & on an inout parameter
<rdar://problem/18104379> Terrible error message
<rdar://problem/18121897> unexpected low-level error on assignment to immutable value through array writeback
<rdar://problem/18123596> unexpected error on self. capture inside class method
<rdar://problem/18152074> QoI: Improve diagnostic for type mismatch in dictionary subscripting
<rdar://problem/18242160> There could be a better error message when using [] instead of [:]
<rdar://problem/18242812> 6A1021a : Type variable leaked
<rdar://problem/18331819> Unclear error message when trying to set an element of an array constant (Swift)
<rdar://problem/18414834> Bad diagnostics example
<rdar://problem/18422468> Calculation of constant value yields unexplainable error
<rdar://problem/18427217> Misleading error message makes debugging difficult
<rdar://problem/18439742> Misleading error: "cannot invoke" mentions completely unrelated types as arguments
<rdar://problem/18535804> Wrong compiler error from swift compiler
<rdar://problem/18567914> Xcode 6.1. GM, Swift, assignment from Int64 to NSNumber. Warning shown as problem with UInt8
<rdar://problem/18784027> Negating Int? Yields Float
<rdar://problem/17691565> attempt to modify a 'let' variable with ++ results in typecheck error about @lvalue Float
<rdar://problem/17164001> "++" on let value could give a better error message
Swift SVN r23782
When a non-final class satisfies a method requirement that returns
Self, it must do so with a method that also returns (dynamic)
Self. This ensures conformance will be inheritable, closing off an
awful type-safety hole <rdar://problem/16880016>. Other
non-contravariant uses of Self in the signatures of requirements cause
the protocol to be unusable by non-final classes.
I had to leave a tiny little gaping hole for the ~> operator, whose
removal is covered by <rdar://problem/17828741>. We can possibly put
this on firm footing with clever handling of generic witnesses, but
it's not important right now.
Swift SVN r20626